Publicação:
To tune or not to tune: recommending when to adjust SVM hyper-parameters via Meta-learning

dc.contributor.authorMantovani, Rafael G.
dc.contributor.authorRossi, Andre L. D. [UNESP]
dc.contributor.authorVanschoren, Joaquin
dc.contributor.authorBischl, Bernd
dc.contributor.authorCarvalho, Andre C. P. L. F.
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEindhoven Univ Technol
dc.contributor.institutionLudwig Maximilians Univ Munchen
dc.date.accessioned2018-11-26T16:26:29Z
dc.date.available2018-11-26T16:26:29Z
dc.date.issued2015-01-01
dc.description.abstractMany classification algorithms, such as Neural Networks and Support Vector Machines, have a range of hyperparameters that may strongly affect the predictive performance of the models induced by them. Hence, it is recommended to define the values of these hyper-parameters using optimization techniques. While these techniques usually converge to a good set of values, they typically have a high computational cost, because many candidate sets of values are evaluated during the optimization process. It is often not clear whether this will result in parameter settings that are significantly better than the default settings. When training time is limited, it may help to know when these parameters should definitely be tuned. In this study, we use meta-learning to predict when optimization techniques are expected to lead to models whose predictive performance is better than those obtained by using default parameter settings. Hence, we can choose to employ optimization techniques only when they are expected to improve performance, thus reducing the overall computational cost. We evaluate these meta-learning techniques on more than one hundred data sets. The experimental results show that it is possible to accurately predict when optimization techniques should be used instead of default values suggested by some machine learning libraries.en
dc.description.affiliationUniv Sao Paulo, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Paulista UNESP, Itapeva, SP, Brazil
dc.description.affiliationEindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
dc.description.affiliationLudwig Maximilians Univ Munchen, Munich, Germany
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Itapeva, SP, Brazil
dc.format.extent8
dc.identifier.citation2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.
dc.identifier.fileWOS000370730602079.pdf
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/161236
dc.identifier.wosWOS:000370730602079
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2015 International Joint Conference On Neural Networks (ijcnn)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleTo tune or not to tune: recommending when to adjust SVM hyper-parameters via Meta-learningen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes5604829226181486[2]
unesp.author.orcid0000-0001-6388-7479[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000370730602079.pdf
Tamanho:
1.17 MB
Formato:
Adobe Portable Document Format
Descrição: