Color normalization of faded H&E-stained histological images using spectral matching

dc.contributor.authorAzevedo Tosta, Thaina A.
dc.contributor.authorFaria, Paulo Rogerio de
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorNascimento, Marcelo Zanchetta do
dc.contributor.institutionFed Univ ABC
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:36:13Z
dc.date.available2020-12-10T19:36:13Z
dc.date.issued2019-08-01
dc.description.abstractHistological samples stained with hematoxylin-eosin (H&E) are commonly used by pathologists in cancer diagnoses. However, the preparation, digitization, and storage of tissue samples can lead to color variations that produce poor performance when using histological image processing techniques. Thus, normalization methods have been proposed to adjust the color of the image. This can be achieved through the use of a spectral matching technique, where it is first necessary to estimate the H&E representation and the stain concentration in the image pixels by means of the RGB model. This study presents an estimation method for H&E stain representation for the normalization of faded histological samples. This application has been explored only to a limited extent in the literature, but has the capacity to expand the use of faded samples. To achieve this, the normalized images must have a coherent color representation of the H&E stain with no introduction of noise, which was realized by applying the methodology described in this proposal. The estimation method presented here aims to normalize histological samples with different degrees of fading using a combination of fuzzy theory and the Cuckoo search algorithm, and dictionary learning with an initialization method for optimization. In visual and quantitative comparisons of estimates of H&E stain representation from the literature, our proposed method achieved very good results, with a high feature similarity between the original and normalized images.en
dc.description.affiliationFed Univ ABC, Ctr Math Comp & Cognit, Av Estados 5001, BR-09210580 Santo Andre, SP, Brazil
dc.description.affiliationUniv Fed Uberlandia, Inst Biomed Sci, Dept Histol & Morphol, Av Amazonas S-N, BR-38405320 Uberlandia, MG, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Fed Uberlandia, Fac Comp Sci, Av Jodo Naves de Avila 2121, BR-38400902 Uberlandia, MG, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 304848/2018-2
dc.description.sponsorshipIdCNPq: 430965/2018-4
dc.description.sponsorshipIdCNPq: 313365/2018-0
dc.description.sponsorshipIdFAPEMIG: APQ-00578-18
dc.description.sponsorshipIdCAPES: 1575210
dc.format.extent14
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2019.103344
dc.identifier.citationComputers In Biology And Medicine. Oxford: Pergamon-elsevier Science Ltd, v. 111, 14 p., 2019.
dc.identifier.doi10.1016/j.compbiomed.2019.103344
dc.identifier.issn0010-4825
dc.identifier.urihttp://hdl.handle.net/11449/196181
dc.identifier.wosWOS:000485854400016
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputers In Biology And Medicine
dc.sourceWeb of Science
dc.subjectColor normalization
dc.subjectHistological images
dc.subjectFaded histological samples
dc.subjectSpectral matching
dc.titleColor normalization of faded H&E-stained histological images using spectral matchingen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos