The Fokker-Planck equation for a bistable potential

dc.contributor.authorCaldas, Denise [UNESP]
dc.contributor.authorChahine, Jorge [UNESP]
dc.contributor.authorDrigo Filho, Elso [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:53:44Z
dc.date.available2015-03-18T15:53:44Z
dc.date.issued2014-10-15
dc.description.abstractThe Fokker-Planck equation is studied through its relation to a Schrodinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrodinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time tau to overcome the barrier. By calculating the rates k = 1/tau as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k x 1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes. (C) 2014 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Inst Biociencia Letras & Ciencias Exatas, Dept Fis, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Inst Biociencia Letras & Ciencias Exatas, Dept Fis, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.format.extent92-100
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2014.06.009
dc.identifier.citationPhysica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 412, p. 92-100, 2014.
dc.identifier.doi10.1016/j.physa.2014.06.009
dc.identifier.issn0378-4371
dc.identifier.lattes1518826294347383
dc.identifier.lattes3277957413291567
dc.identifier.urihttp://hdl.handle.net/11449/116692
dc.identifier.wosWOS:000340692700009
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPhysica A-statistical Mechanics And Its Applications
dc.relation.ispartofjcr2.132
dc.relation.ispartofsjr0,773
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectFokker-Planck equationen
dc.subjectBistable potentialen
dc.subjectArrhenius behavioren
dc.titleThe Fokker-Planck equation for a bistable potentialen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.lattes1518826294347383
unesp.author.lattes3277957413291567
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentFísica - IBILCEpt

Arquivos