Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Theoretical background and related works

Nenhuma Miniatura disponível

Data

2022-01-24

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

The Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyright

Descrição

Idioma

Inglês

Como citar

Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.

Itens relacionados

Financiadores