Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Theoretical background and related works

dc.contributor.authorAfonso, Luis C.S. [UNESP]
dc.contributor.authorFalcão, Alexandre Xavier
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2023-03-02T08:37:43Z
dc.date.available2023-03-02T08:37:43Z
dc.date.issued2022-01-24
dc.description.abstractThe Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyrighten
dc.description.affiliationUNESP - São Paulo State University School of Sciences
dc.description.affiliationInstitute of Computing University of Campinas (UNICAMP) Campinas
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationUnespUNESP - São Paulo State University School of Sciences
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.format.extent5-54
dc.identifierhttp://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4
dc.identifier.citationOptimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.
dc.identifier.doi10.1016/B978-0-12-822688-9.00010-4
dc.identifier.scopus2-s2.0-85134936860
dc.identifier.urihttp://hdl.handle.net/11449/242083
dc.language.isoeng
dc.relation.ispartofOptimum-Path Forest: Theory, Algorithms, and Applications
dc.sourceScopus
dc.subjectImage-forest transform
dc.subjectMachine learning
dc.subjectOptimum-path forest
dc.subjectPattern recognition
dc.titleTheoretical background and related worksen
dc.typeCapítulo de livro
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos