Christoffel formula for kernel polynomials on the unit circle

dc.contributor.authorBracciali, C. F. [UNESP]
dc.contributor.authorMartínez-Finkelshtein, A.
dc.contributor.authorRanga, A. S. [UNESP]
dc.contributor.authorVeronese, D. O.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidad de Almería
dc.contributor.institutionGranada University
dc.contributor.institutionUFTM - Universidade Federal do Triângulo Mineiro
dc.date.accessioned2018-12-11T17:20:52Z
dc.date.available2018-12-11T17:20:52Z
dc.date.issued2018-11-01
dc.description.abstractGiven a nontrivial positive measure μ on the unit circle T, the associated Christoffel–Darboux kernels are Kn(z,w;μ)=∑k=0 nφk(w;μ)¯φk(z;μ), n≥0, where φk(⋅;μ) are the orthonormal polynomials with respect to the measure μ. Let the positive measure ν on the unit circle be given by dν(z)=|G2m(z)|dμ(z), where G2m is a conjugate reciprocal polynomial of exact degree 2m. We establish a determinantal formula expressing {Kn(z,w;ν)}n≥0 directly in terms of {Kn(z,w;μ)}n≥0. Furthermore, we consider the special case of w=1; it is known that appropriately normalized polynomials Kn(z,1;μ) satisfy a recurrence relation whose coefficients are given in terms of two sets of real parameters {cn(μ)}n=1 ∞ and {gn(μ)}n=1 ∞, with 0<gn<1 for n≥1. The double sequence {(cn(μ),gn(μ))}n=1 ∞ characterizes the measure μ. A natural question about the relation between the parameters cn(μ), gn(μ), associated with μ, and the sequences cn(ν), gn(ν), corresponding to ν, is also addressed. Finally, examples are considered, such as the Geronimus weight (a measure supported on an arc of T), a measure for which the Christoffel–Darboux kernels, with w=1, are given by basic hypergeometric polynomials and a measure for which the orthogonal polynomials and the Christoffel–Darboux kernels, again with w=1, are given by hypergeometric polynomials.en
dc.description.affiliationDMAp IBILCE UNESP - Universidade Estadual Paulista
dc.description.affiliationDepartamento de Matemáticas Universidad de Almería
dc.description.affiliationInstituto Carlos I de Física Teórica and Computacional Granada University
dc.description.affiliationICTE UFTM - Universidade Federal do Triângulo Mineiro
dc.description.affiliationUnespDMAp IBILCE UNESP - Universidade Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipConsejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
dc.description.sponsorshipIdFAPESP: 2016/09906-0
dc.description.sponsorshipIdFAPESP: 2017/12324-6
dc.description.sponsorshipIdCNPq: 305073/2014-1
dc.description.sponsorshipIdCNPq: 305208/2015-2
dc.description.sponsorshipIdCNPq: 402939/2016-6
dc.description.sponsorshipIdMinisterio de Economía y Competitividad: MTM2014-53963-P
dc.description.sponsorshipIdConsejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía: P11-FQM-7276
dc.format.extent46-73
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2018.05.001
dc.identifier.citationJournal of Approximation Theory, v. 235, p. 46-73.
dc.identifier.doi10.1016/j.jat.2018.05.001
dc.identifier.issn1096-0430
dc.identifier.issn0021-9045
dc.identifier.lattes8300322452622467
dc.identifier.orcid0000-0002-6823-4204
dc.identifier.scopus2-s2.0-85048545063
dc.identifier.urihttp://hdl.handle.net/11449/176456
dc.language.isoeng
dc.relation.ispartofJournal of Approximation Theory
dc.relation.ispartofsjr0,907
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectChristoffel formulas
dc.subjectOrthogonal functions
dc.subjectOrthogonal polynomials on the unit circle
dc.subjectThree term recurrence relation
dc.titleChristoffel formula for kernel polynomials on the unit circleen
dc.typeArtigo
unesp.author.lattes3587123309745610[3]
unesp.author.lattes8300322452622467[1]
unesp.author.orcid0000-0002-5124-8423[3]
unesp.author.orcid0000-0002-6823-4204[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática Aplicada - IBILCEpt

Arquivos