Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network

dc.contributor.authorNose-Filho, Kenji [UNESP]
dc.contributor.authorPlasencia Lotufo, Anna Diva [UNESP]
dc.contributor.authorMinussi, Carlos Roberto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:29:13Z
dc.date.available2014-05-20T13:29:13Z
dc.date.issued2011-10-01
dc.description.abstractMultinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, a technique that is precise, reliable, and has short-time processing is necessary. This paper uses two methodologies for short-term multinodal load forecasting. The first individually forecasts the local loads and the second forecasts the global load and individually forecasts the load participation factors to estimate the local loads. For the forecasts, a modified general regression neural network and a procedure to automatically reduce the number of inputs of the artificial neural networks are proposed. To design the forecasters, the previous study of the local loads was not necessary, thus reducing the complexity of the multinodal load forecasting. Tests were carried out by using a New Zealand distribution subsystem and the results obtained were found to be compatible with those available in the specialized literature.en
dc.description.affiliationUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent2862-2869
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2011.2166566
dc.identifier.citationIEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2862-2869, 2011.
dc.identifier.doi10.1109/TPWRD.2011.2166566
dc.identifier.issn0885-8977
dc.identifier.lattes7166279400544764
dc.identifier.urihttp://hdl.handle.net/11449/9830
dc.identifier.wosWOS:000298981800087
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Power Delivery
dc.relation.ispartofjcr3.350
dc.relation.ispartofsjr1,814
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBus load forecastingen
dc.subjectdata preprocessingen
dc.subjectgeneral regression neural network (GRNN)en
dc.subjectshort-term load forecastingen
dc.titleShort-Term Multinodal Load Forecasting Using a Modified General Regression Neural Networken
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIEEE-Inst Electrical Electronics Engineers Inc
unesp.author.lattes7166279400544764[3]
unesp.author.lattes6022112355517660[2]
unesp.author.orcid0000-0002-0192-2651[2]
unesp.author.orcid0000-0001-6428-4506[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: