Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network
dc.contributor.author | Nose-Filho, Kenji [UNESP] | |
dc.contributor.author | Plasencia Lotufo, Anna Diva [UNESP] | |
dc.contributor.author | Minussi, Carlos Roberto [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T13:29:13Z | |
dc.date.available | 2014-05-20T13:29:13Z | |
dc.date.issued | 2011-10-01 | |
dc.description.abstract | Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, a technique that is precise, reliable, and has short-time processing is necessary. This paper uses two methodologies for short-term multinodal load forecasting. The first individually forecasts the local loads and the second forecasts the global load and individually forecasts the load participation factors to estimate the local loads. For the forecasts, a modified general regression neural network and a procedure to automatically reduce the number of inputs of the artificial neural networks are proposed. To design the forecasters, the previous study of the local loads was not necessary, thus reducing the complexity of the multinodal load forecasting. Tests were carried out by using a New Zealand distribution subsystem and the results obtained were found to be compatible with those available in the specialized literature. | en |
dc.description.affiliation | Univ Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 2862-2869 | |
dc.identifier | http://dx.doi.org/10.1109/TPWRD.2011.2166566 | |
dc.identifier.citation | IEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2862-2869, 2011. | |
dc.identifier.doi | 10.1109/TPWRD.2011.2166566 | |
dc.identifier.issn | 0885-8977 | |
dc.identifier.lattes | 7166279400544764 | |
dc.identifier.uri | http://hdl.handle.net/11449/9830 | |
dc.identifier.wos | WOS:000298981800087 | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.ispartof | IEEE Transactions on Power Delivery | |
dc.relation.ispartofjcr | 3.350 | |
dc.relation.ispartofsjr | 1,814 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Bus load forecasting | en |
dc.subject | data preprocessing | en |
dc.subject | general regression neural network (GRNN) | en |
dc.subject | short-term load forecasting | en |
dc.title | Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | IEEE-Inst Electrical Electronics Engineers Inc | |
unesp.author.lattes | 7166279400544764[3] | |
unesp.author.lattes | 6022112355517660[2] | |
unesp.author.orcid | 0000-0002-0192-2651[2] | |
unesp.author.orcid | 0000-0001-6428-4506[3] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteira | pt |
unesp.department | Engenharia Elétrica - FEIS | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: