Protective PMMA-silica coatings for aluminum alloys: Nanostructural control of elevated thermal stability and anticorrosive performance

dc.contributor.authordos Santos, Fábio Cesar [UNESP]
dc.contributor.authorPulcinelli, Sandra Helena [UNESP]
dc.contributor.authorSantilli, Celso Valentim [UNESP]
dc.contributor.authorHammer, Peter [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:10:06Z
dc.date.available2021-06-25T11:10:06Z
dc.date.issued2021-03-01
dc.description.abstractOrganic-inorganic hybrid coatings for corrosion protection of aluminum alloys are promising alternatives to the current methods based on chromate passivation. This study examined the role of the polymer/silica ratio in terms of the hybrid nanostructure formed and its effect on the thermal stability and anticorrosive performance of the polymethyl methacrylate (PMMA)-siloxane-silica hybrid coatings. The chemical and nanostructural properties of the hybrid coatings assessed using Fourier transform infrared (FTIR) and small angle X-ray scattering (SAXS) were correlated with the thermal stability evaluated by thermogravimetry (TGA) and corrosion protection evaluated by electrochemical impedance spectroscopy (EIS) in saline/acid solution (NaCl 3.5 % + HCl pH 3). TGA showed that the high thermal stability (up to 287 °C) of the hybrid formulations with lower silica fractions is related to the adequate size and spacing of the siloxane nodes in the embedding polymer matrix. Correlation of SAXS and EIS measurements allowed to identify the specific molar ratios and nanostructural configuration in which the polymer and siloxane-silica nodes ideally combine forming thin PMMA-silica coatings (2−5 μm) that present long-term stability (> 6 months) with a corrosion resistance of up to 25 GΩ cm2, being approximately 7 orders of magnitude higher than that of the uncoated Al2024-T3 substrate.en
dc.description.affiliationSão Paulo State University (UNESP) Institute of Chemistry
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Chemistry
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 307905/2018-7
dc.description.sponsorshipIdCNPq: 424133/2016-4
dc.identifierhttp://dx.doi.org/10.1016/j.porgcoat.2020.106129
dc.identifier.citationProgress in Organic Coatings, v. 152.
dc.identifier.doi10.1016/j.porgcoat.2020.106129
dc.identifier.issn0300-9440
dc.identifier.scopus2-s2.0-85099193559
dc.identifier.urihttp://hdl.handle.net/11449/208311
dc.language.isoeng
dc.relation.ispartofProgress in Organic Coatings
dc.sourceScopus
dc.subjectCorrosion resistance
dc.subjectNanostructured hybrid coatings
dc.subjectOrganic-inorganic nanocomposite
dc.subjectPMMA-silica
dc.subjectPoly(methyl methacrylate)
dc.subjectThermal stability
dc.titleProtective PMMA-silica coatings for aluminum alloys: Nanostructural control of elevated thermal stability and anticorrosive performanceen
dc.typeArtigo
unesp.author.orcid0000-0002-3823-0050[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos