Nonabelian Toda theories from parafermionic reductions of the WZW model
Nenhuma Miniatura disponível
Data
1999-06-15
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Academic Press Inc.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We investigate a class of conformal nonabelian-Toda models representing noncompact SL(2, R)/U(1) parafermions (PF) interacting with specific abelian Toda theories and having a global U(1) symmetry. A systematic derivation of the conserved currents, their algebras, and the exact solution of these models are presented. An important property of this class of models is the affine SL(2, R)(q) algebra spanned by charges of the chiral and antichiral nonlocal currents and the U(1) charge. The classical (Poisson brackets) algebras of symmetries VG(n), of these models appear to be of mixed PF-WG(n) type. They contain together with the local quadratic terms specific for the W-n-algebras the nonlocal terms similar to the ones of the classical PF-algebra. The renormalization of the spins of the nonlocal currents is the main new feature of the quantum VA(n)-algebras. The quantum VA(2)-algebra and its degenerate representations are studied in detail. (C) 1999 Academic Press.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Annals of Physics. San Diego: Academic Press Inc., v. 274, n. 2, p. 289-362, 1999.