Relation between the nature of the surface facets and the reactivity of Cu2O nanostructures anchored on TiO2NT@PDA electrodes in the photoelectrocatalytic conversion of CO2 to methanol

Nenhuma Miniatura disponível

Data

2020-02-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This paper investigates the influence of morphology of Cu2O nanoparticles (cubes, NcCu2O; spheres, NsCu2O; octahedrons, NoCu2O), deposited on TiO2 nanotubes (TiO2NT) coated with PDA, in the photoelectrocatalytic conversion of CO2 to methanol. At low bias (+0.2 V) a production of 10.0, 6.0 and 5.4 mg L−1 of methanol was obtained for TiO2NT@PDA-NsCu2O, TiO2NT@PDA-NoCu2O, and TiO2NT@PDA-NcCu2O electrodes, with faradaic efficiencies of 27, 39, and 66%, respectively. The conversion to methanol was 357% higher with NcCu2O, compared to the TiO2NT@PDA electrode. The results indicated that both the optical properties and the photocatalytic performance of nanostructures were facet-dependent. The superior catalytic activity of NcCu2O was attributed to the higher concentration of oxygen vacancies on {100} facets, which promotes the activation of CO2 with an energy of −1.2 kcal mol−1. With a lower concentration of oxygen vacancies, CO2 molecule is only physisorbed on {111} facets with an energy of −8.8 kcal mol−1.

Descrição

Idioma

Inglês

Como citar

Applied Catalysis B: Environmental, v. 261.

Itens relacionados