Region-based classification of PolSAR data through kernel methods and stochastic distances

dc.contributor.authorNegri, Rogério G. [UNESP]
dc.contributor.authorCasaca, Wallace C. O. [UNESP]
dc.contributor.authorSilva, Erivaldo A. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:27:12Z
dc.date.available2022-04-29T08:27:12Z
dc.date.issued2018-01-01
dc.description.abstractStochastic distances combined with Minimum Distance method for region-based classification of Polarimetric Synthetic Aperture Radar (PolSAR) image was successfully verified in Silva et al. (2013). Methods like K-Nearest Neighbors may also adopt stochastic distances and then used in a similar purpose. The present study investigates the use of kernel methods for PolSAR region-based classification. For this purpose, the Jeffries-Matusita stochastic distance between Complex Multivariate Wishart distributions is integrated in a kernel function and then used in Support Vector Machine and Graph-Based kernel methods. A case study regarding PolSAR remote sensing image classification is carried to assess the above mentioned methods. The results show superiority of kernel methods in comparison to the other analyzed methods.en
dc.description.affiliationInstituto de Ciência e Tecnologia Univ. Estadual Paulista
dc.description.affiliationCampus Experimental de Rosana Univ. Estadual Paulista
dc.description.affiliationFaculdade de Ciência e Tecnologia Univ. Estadual Paulista
dc.description.affiliationUnespInstituto de Ciência e Tecnologia Univ. Estadual Paulista
dc.description.affiliationUnespCampus Experimental de Rosana Univ. Estadual Paulista
dc.description.affiliationUnespFaculdade de Ciência e Tecnologia Univ. Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2014/14830-8
dc.format.extent433-440
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-75193-1_52
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 433-440.
dc.identifier.doi10.1007/978-3-319-75193-1_52
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85042224492
dc.identifier.urihttp://hdl.handle.net/11449/228509
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectImage classification
dc.subjectKernel function
dc.subjectPolSAR
dc.subjectRegion-based
dc.subjectStochastic distances
dc.titleRegion-based classification of PolSAR data through kernel methods and stochastic distancesen
dc.typeTrabalho apresentado em evento
unesp.author.orcid0000-0002-4808-2362[1]
unesp.author.orcid0000-0002-1073-9939[2]
unesp.author.orcid0000-0002-7069-0479[3]

Arquivos