Region-based classification of PolSAR data through kernel methods and stochastic distances
dc.contributor.author | Negri, Rogério G. [UNESP] | |
dc.contributor.author | Casaca, Wallace C. O. [UNESP] | |
dc.contributor.author | Silva, Erivaldo A. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-29T08:27:12Z | |
dc.date.available | 2022-04-29T08:27:12Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | Stochastic distances combined with Minimum Distance method for region-based classification of Polarimetric Synthetic Aperture Radar (PolSAR) image was successfully verified in Silva et al. (2013). Methods like K-Nearest Neighbors may also adopt stochastic distances and then used in a similar purpose. The present study investigates the use of kernel methods for PolSAR region-based classification. For this purpose, the Jeffries-Matusita stochastic distance between Complex Multivariate Wishart distributions is integrated in a kernel function and then used in Support Vector Machine and Graph-Based kernel methods. A case study regarding PolSAR remote sensing image classification is carried to assess the above mentioned methods. The results show superiority of kernel methods in comparison to the other analyzed methods. | en |
dc.description.affiliation | Instituto de Ciência e Tecnologia Univ. Estadual Paulista | |
dc.description.affiliation | Campus Experimental de Rosana Univ. Estadual Paulista | |
dc.description.affiliation | Faculdade de Ciência e Tecnologia Univ. Estadual Paulista | |
dc.description.affiliationUnesp | Instituto de Ciência e Tecnologia Univ. Estadual Paulista | |
dc.description.affiliationUnesp | Campus Experimental de Rosana Univ. Estadual Paulista | |
dc.description.affiliationUnesp | Faculdade de Ciência e Tecnologia Univ. Estadual Paulista | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2014/14830-8 | |
dc.format.extent | 433-440 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-75193-1_52 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 433-440. | |
dc.identifier.doi | 10.1007/978-3-319-75193-1_52 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-85042224492 | |
dc.identifier.uri | http://hdl.handle.net/11449/228509 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.source | Scopus | |
dc.subject | Image classification | |
dc.subject | Kernel function | |
dc.subject | PolSAR | |
dc.subject | Region-based | |
dc.subject | Stochastic distances | |
dc.title | Region-based classification of PolSAR data through kernel methods and stochastic distances | en |
dc.type | Trabalho apresentado em evento | |
unesp.author.orcid | 0000-0002-4808-2362[1] | |
unesp.author.orcid | 0000-0002-1073-9939[2] | |
unesp.author.orcid | 0000-0002-7069-0479[3] |