Residual Neural Network precisely quantifies dysarthria severity-level based on short-duration speech segments

Nenhuma Miniatura disponível

Data

2021-07-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Recently, we have witnessed Deep Learning methodologies gaining significant attention for severity-based classification of dysarthric speech. Detecting dysarthria, quantifying its severity, are of paramount importance in various real-life applications, such as the assessment of patients’ progression in treatments, which includes an adequate planning of their therapy and the improvement of speech-based interactive systems in order to handle pathologically-affected voices automatically. Notably, current speech-powered tools often deal with short-duration speech segments and, consequently, are less efficient in dealing with impaired speech, even by using Convolutional Neural Networks (CNNs). Thus, detecting dysarthria severity-level based on short speech segments might help in improving the performance and applicability of those systems. To achieve this goal, we propose a novel Residual Network (ResNet)-based technique which receives short-duration speech segments as input. Statistically meaningful objective analysis of our experiments, reported over standard Universal Access corpus, exhibits average values of 21.35% and 22.48% improvement, compared to the baseline CNN, in terms of classification accuracy and F1-score, respectively. For additional comparisons, tests with Gaussian Mixture Models and Light CNNs were also performed. Overall, the values of 98.90% and 98.00% for classification accuracy and F1-score, respectively, were obtained with the proposed ResNet approach, confirming its efficacy and reassuring its practical applicability.

Descrição

Idioma

Inglês

Como citar

Neural Networks, v. 139, p. 105-117.

Itens relacionados