Breaking the chains: Hot super-Earth systems from migration and disruption of compact resonant chains

dc.contributor.authorIzidoro, Andre [UNESP]
dc.contributor.authorOgihara, Masahiro
dc.contributor.authorRaymond, Sean N.
dc.contributor.authorMorbidelli, Alessandro
dc.contributor.authorPierens, Arnaud
dc.contributor.authorBitsch, Bertram
dc.contributor.authorCossou, Christophe
dc.contributor.authorHersant, Franck
dc.contributor.institutionB18N
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionNational Astronomical Observatory of Japan
dc.contributor.institutionObservatoire de la Côe d'Azur
dc.contributor.institutionLund University
dc.contributor.institutionIAS Institut d'Astrophysique Spatiale Université Paris Sud
dc.date.accessioned2018-12-11T16:48:17Z
dc.date.available2018-12-11T16:48:17Z
dc.date.issued2017-09-11
dc.description.abstract'Hot super-Earths' (or 'mini-Neptunes') between one and four times Earth's size with period shorter than 100 d orbit 30-50 per cent of Sun-like stars. Their orbital configuration - measured as the period ratio distribution of adjacent planets in multiplanet systems - is a strong constraint for formation models. Here, we use N-body simulations with synthetic forces from an underlying evolving gaseous disc to model the formation and long-term dynamical evolution of super-Earth systems. While the gas disc is present, planetary embryos grow and migrate inward to form a resonant chain anchored at the inner edge of the disc. These resonant chains are far more compact than the observed super-Earth systems. Once the gas dissipates, resonant chains may become dynamically unstable. They undergo a phase of giant impacts that spreads the systems out. Disc turbulence has no measurable effect on the outcome. Our simulations match observations if a small fraction of resonant chains remain stable, while most super- Earths undergo a late dynamical instability. Our statistical analysis restricts the contribution of stable systems to less than 25 per cent. Our results also suggest that the large fraction of observed single-planet systems does not necessarily imply any dichotomy in the architecture of planetary systems. Finally, we use the low abundance of resonances in Kepler data to argue that, in reality, the survival of resonant chains happens likely only in ~5 per cent of the cases. This leads to a mystery: in our simulations only 50-60 per cent of resonant chains became unstable, whereas at least 75 per cent (and probably 90-95 per cent) must be unstable to match observations.en
dc.description.affiliationLaboratoire d'astrophysique de Bordeaux Univ. Bordeaux CNRS B18N, allée Geoffroy Saint-Hilaire
dc.description.affiliationUNESP Univ. Estadual Paulista Grupo de Dinâmica Orbital and Planetologia
dc.description.affiliationDivision of Theoretical Astronomy National Astronomical Observatory of Japan, 2-21-1, Osawa
dc.description.affiliationLaboratoire Lagrange UMR7293 Université Côe d'Azur CNRS Observatoire de la Côe d'Azur, Boulevard de l'Observatoire
dc.description.affiliationLund Observatory Department of Astronomy and Theoretical Physics Lund University, Box 43
dc.description.affiliationIAS Institut d'Astrophysique Spatiale Université Paris Sud, Bâtiment 121
dc.description.affiliationUnespUNESP Univ. Estadual Paulista Grupo de Dinâmica Orbital and Planetologia
dc.format.extent1750-1770
dc.identifierhttp://dx.doi.org/10.1093/mnras/stx1232
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, v. 470, n. 2, p. 1750-1770, 2017.
dc.identifier.doi10.1093/mnras/stx1232
dc.identifier.file2-s2.0-85023780823.pdf
dc.identifier.issn1365-2966
dc.identifier.issn0035-8711
dc.identifier.scopus2-s2.0-85023780823
dc.identifier.urihttp://hdl.handle.net/11449/169929
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.relation.ispartofsjr2,346
dc.relation.ispartofsjr2,346
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDisc interactions
dc.subjectMethods: Numerical
dc.subjectPlanet
dc.subjectPlanets and satellites: Dynamical evolution and stability
dc.subjectPlanets and satellites: Formation
dc.subjectProtoplanetary discs
dc.titleBreaking the chains: Hot super-Earth systems from migration and disruption of compact resonant chainsen
dc.typeArtigo

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85023780823.pdf
Tamanho:
3.62 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções