Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations

dc.contributor.authorHazra, Chanchal
dc.contributor.authorSkripka, Artiom
dc.contributor.authorRibeiro, Sidney J. L. [UNESP]
dc.contributor.authorVetrone, Fiorenzo
dc.contributor.institutionUniversité du Québec
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:05:02Z
dc.date.available2021-06-25T11:05:02Z
dc.date.issued2020-12-01
dc.description.abstractNear-infrared (NIR) nanothermometers are sought after in biomedicine when it comes to measuring temperatures subcutaneously. Yet, temperature sensing within the third biological imaging window (BW-III), where the highest contrast images can be obtained, remains relatively unexplored. Here, LiErF4/LiYF4 rare-earth nanoparticles (RENPs) are studied as NIR nanothermometers in the BW-III. Under 793 nm excitation, LiErF4/LiYF4RENPs emit around 1540 nm, corresponding to the 4I13/2 → 4I15/2radiative transition of Er3+. The fine Stark structure of this transition allows to delineate intensity regions within the emission band that can be used for single-band ratiometric nanothermometry. These nanothermometers have a relative temperature sensitivity of ≈0.40% °C−1. The temperature-dependent energy transfer to the surrounding solvent molecules plays a significant role in the thermometric properties of the RENPs. In addition, Ce3+ions are doped in the core of the RENPs to examine whether it affects the NIR emission and temperature sensitivity. Ce3+ at 1 mol% marginally influences the downshifting emission intensity of the RENPs, yet increases the relative thermal sensitivity to ≈0.45% °C−1. Furthermore, Ce3+ quenches the visible upconversion emission of the RENPs. Together, LiErF4:Ce3+/LiYF4RENPs enable single-band photoluminescence nanothermometry in the BW-III, with the future possibility of its integration within multifunctional decoupled theranostic nanostructures.en
dc.description.affiliationInstitut National de la Recherche Scientifique Centre Énergie Matériaux et Télécommunications Université du Québec, 1650 Boul. Lionel-Boulet
dc.description.affiliationInstitute of Chemistry São Paulo State University—UNESP
dc.description.affiliationUnespInstitute of Chemistry São Paulo State University—UNESP
dc.identifierhttp://dx.doi.org/10.1002/adom.202001178
dc.identifier.citationAdvanced Optical Materials, v. 8, n. 23, 2020.
dc.identifier.doi10.1002/adom.202001178
dc.identifier.issn2195-1071
dc.identifier.scopus2-s2.0-85092127580
dc.identifier.urihttp://hdl.handle.net/11449/208024
dc.language.isoeng
dc.relation.ispartofAdvanced Optical Materials
dc.sourceScopus
dc.subjectbiological windows
dc.subjectLiErF 4
dc.subjectnanothermometry
dc.subjectnear-infrared emission
dc.subjectrare-earth nanoparticles
dc.subjectupconversion
dc.titleErbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitationsen
dc.typeArtigo
unesp.author.orcid0000-0002-3222-3052[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentQuímica Inorgânica - IQARpt

Arquivos