Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations
dc.contributor.author | Hazra, Chanchal | |
dc.contributor.author | Skripka, Artiom | |
dc.contributor.author | Ribeiro, Sidney J. L. [UNESP] | |
dc.contributor.author | Vetrone, Fiorenzo | |
dc.contributor.institution | Université du Québec | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T11:05:02Z | |
dc.date.available | 2021-06-25T11:05:02Z | |
dc.date.issued | 2020-12-01 | |
dc.description.abstract | Near-infrared (NIR) nanothermometers are sought after in biomedicine when it comes to measuring temperatures subcutaneously. Yet, temperature sensing within the third biological imaging window (BW-III), where the highest contrast images can be obtained, remains relatively unexplored. Here, LiErF4/LiYF4 rare-earth nanoparticles (RENPs) are studied as NIR nanothermometers in the BW-III. Under 793 nm excitation, LiErF4/LiYF4RENPs emit around 1540 nm, corresponding to the 4I13/2 → 4I15/2radiative transition of Er3+. The fine Stark structure of this transition allows to delineate intensity regions within the emission band that can be used for single-band ratiometric nanothermometry. These nanothermometers have a relative temperature sensitivity of ≈0.40% °C−1. The temperature-dependent energy transfer to the surrounding solvent molecules plays a significant role in the thermometric properties of the RENPs. In addition, Ce3+ions are doped in the core of the RENPs to examine whether it affects the NIR emission and temperature sensitivity. Ce3+ at 1 mol% marginally influences the downshifting emission intensity of the RENPs, yet increases the relative thermal sensitivity to ≈0.45% °C−1. Furthermore, Ce3+ quenches the visible upconversion emission of the RENPs. Together, LiErF4:Ce3+/LiYF4RENPs enable single-band photoluminescence nanothermometry in the BW-III, with the future possibility of its integration within multifunctional decoupled theranostic nanostructures. | en |
dc.description.affiliation | Institut National de la Recherche Scientifique Centre Énergie Matériaux et Télécommunications Université du Québec, 1650 Boul. Lionel-Boulet | |
dc.description.affiliation | Institute of Chemistry São Paulo State University—UNESP | |
dc.description.affiliationUnesp | Institute of Chemistry São Paulo State University—UNESP | |
dc.identifier | http://dx.doi.org/10.1002/adom.202001178 | |
dc.identifier.citation | Advanced Optical Materials, v. 8, n. 23, 2020. | |
dc.identifier.doi | 10.1002/adom.202001178 | |
dc.identifier.issn | 2195-1071 | |
dc.identifier.scopus | 2-s2.0-85092127580 | |
dc.identifier.uri | http://hdl.handle.net/11449/208024 | |
dc.language.iso | eng | |
dc.relation.ispartof | Advanced Optical Materials | |
dc.source | Scopus | |
dc.subject | biological windows | |
dc.subject | LiErF 4 | |
dc.subject | nanothermometry | |
dc.subject | near-infrared emission | |
dc.subject | rare-earth nanoparticles | |
dc.subject | upconversion | |
dc.title | Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0002-3222-3052[4] |