Logotipo do repositório
 

Publicação:
Likelihood approximations and discrete models for tied survival data

dc.contributor.authorChalita, LVAS
dc.contributor.authorColosimo, E. A.
dc.contributor.authorDemetrio, CGB
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:47:44Z
dc.date.available2014-05-20T13:47:44Z
dc.date.issued2002-01-01
dc.description.abstractTies among event times are often recorded in survival studies. For example, in a two week laboratory study where event times are measured in days, ties are very likely to occur. The proportional hazards model might be used in this setting using an approximated partial likelihood function. This approximation works well when the number of ties is small. on the other hand, discrete regression models are suggested when the data are heavily tied. However, in many situations it is not clear which approach should be used in practice. In this work, empirical guidelines based on Monte Carlo simulations are provided. These recommendations are based on a measure of the amount of tied data present and the mean square error. An example illustrates the proposed criterion.en
dc.description.affiliationUniv Estadual Paulista Julio Mesquita Filho, IB, Dept Biostat, BR-18618000 Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista Julio Mesquita Filho, IB, Dept Biostat, BR-18618000 Botucatu, SP, Brazil
dc.format.extent1215-1229
dc.identifierhttp://dx.doi.org/10.1081/STA-120004920
dc.identifier.citationCommunications In Statistics-theory and Methods. New York: Marcel Dekker Inc., v. 31, n. 7, p. 1215-1229, 2002.
dc.identifier.doi10.1081/STA-120004920
dc.identifier.issn0361-0926
dc.identifier.urihttp://hdl.handle.net/11449/17007
dc.identifier.wosWOS:000177082800013
dc.language.isoeng
dc.publisherMarcel Dekker Inc
dc.relation.ispartofCommunications in Statistics: Theory and Methods
dc.relation.ispartofjcr0.353
dc.relation.ispartofsjr0,352
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBreslow approximationpt
dc.subjectCox modelpt
dc.subjectMonte Carlo simulationspt
dc.subjectproportional hazards modelpt
dc.subjecttied observationspt
dc.titleLikelihood approximations and discrete models for tied survival dataen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderMarcel Dekker Inc
dspace.entity.typePublication
unesp.author.orcid0000-0001-8931-5495[1]
unesp.author.orcid0000-0002-3609-178X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: