Logotipo do repositório
 

Publicação:
Sustainable resource management in a supply chain: a methodological proposal combining zero-inflated fuzzy time series and clustering techniques

dc.contributor.authorEwbank, Henrique [UNESP]
dc.contributor.authorFrutuoso Roveda, Jose Arnaldo [UNESP]
dc.contributor.authorMonteiro Masalskiene Roveda, Sandra Regina [UNESP]
dc.contributor.authorRibeiro, Admilson Irio [UNESP]
dc.contributor.authorBressane, Adriano [UNESP]
dc.contributor.authorHadi-Vencheh, Abdollah
dc.contributor.authorWanke, Peter
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionIslamic Azad Univ
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2020-12-10T17:37:07Z
dc.date.available2020-12-10T17:37:07Z
dc.date.issued2020-07-14
dc.description.abstractPurpose The purpose of this paper is to analyze demand forecast strategies to support a more sustainable management in a pallet supply chain, and thus avoid environmental impacts, such as reducing the consumption of forest resources. Design/methodology/approach Since the producer presents several uncertainties regarding its demand logs, a methodology that embed zero-inflated intelligence is proposed combining fuzzy time series with clustering techniques, in order to deal with an excessive count of zeros. Findings A comparison with other models from literature is performed. As a result, the strategy that considered at the same time the excess of zeros and low demands provided the best performance, and thus it can be considered a promising approach, particularly for sustainable supply chains where resources consumption is significant and exist a huge variation in demand over time. Originality/value The findings of the study contribute to the knowledge of the managers and policymakers in achieving sustainable supply chain management. The results provide the important concepts regarding the sustainability of supply chain using fuzzy time series and clustering techniques.en
dc.description.affiliationSao Paulo State Univ, Sorocaba, Brazil
dc.description.affiliationSao Paulo State Univ, Sao Jose Dos Campos, Brazil
dc.description.affiliationIslamic Azad Univ, Dept Math, Isfahan Khorasgan Branch, Esfahan, Iran
dc.description.affiliationUniv Fed Rio de Janeiro, Rio De Janeiro, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sorocaba, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sao Jose Dos Campos, Brazil
dc.format.extent18
dc.identifierhttp://dx.doi.org/10.1108/JEIM-09-2019-0289
dc.identifier.citationJournal Of Enterprise Information Management. Bingley: Emerald Group Publishing Ltd, 18 p., 2020.
dc.identifier.doi10.1108/JEIM-09-2019-0289
dc.identifier.issn1741-0398
dc.identifier.urihttp://hdl.handle.net/11449/195511
dc.identifier.wosWOS:000547981600001
dc.language.isoeng
dc.publisherEmerald Group Publishing Ltd
dc.relation.ispartofJournal Of Enterprise Information Management
dc.sourceWeb of Science
dc.subjectFuzzy sets
dc.subjectSustainability
dc.subjectSupply chain
dc.subjectFuzzy time series
dc.titleSustainable resource management in a supply chain: a methodological proposal combining zero-inflated fuzzy time series and clustering techniquesen
dc.typeArtigopt
dcterms.rightsHolderEmerald Group Publishing Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0003-4018-218X[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos