Logotipo do repositório
 

Publicação:
Damage quantification using transfer component analysis combined with Gaussian process regression

dc.contributor.authorYano, Marcus Omori [UNESP]
dc.contributor.authorSilva, Samuel da [UNESP]
dc.contributor.authorFigueiredo, Eloi
dc.contributor.authorVillani, Luis G Giacon
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLusófona University
dc.contributor.institutionUniversidade de Lisboa
dc.contributor.institutionUniversidade Federal do Espírito Santo (UFES)
dc.date.accessioned2023-03-01T20:04:33Z
dc.date.available2023-03-01T20:04:33Z
dc.date.issued2022-01-01
dc.description.abstractMachine learning methods used in Structural Health Monitoring applications still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their probability distributions that do not allow the model’s generalization for damage detection. This issue is even more complex in situations where one wants to quantify damage levels through data sets collected from different structures. Transfer learning methods offer a solution to overcome those limitations, using relevant information from a labeled structure (source domain) to assist the analysis of another structure (target domain) under unknown conditions. Therefore, this paper proposes the use of transfer component analysis to mitigate divergences between the model/structure’s features, and the label consistency requirement is applied in combination with a Gaussian process regression model for damage quantification. The effectiveness of the estimated model improves when the labels consistency between domains is achieved, indicating the current damage level in the structure when the regression model achieves its best performance (lowest error). The proposed methodology is applied on the benchmark data of a three-story building structure from the Los Alamos National Laboratory using the knowledge from its numerical model under several conditions, where the complete information of its behavior is available. The results compare the analysis in the original space and after applying the proposed methodology, demonstrating an improvement of the performance in the damage detection and quantification steps.en
dc.description.affiliationDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.description.affiliationFaculty of Engineering Lusófona University
dc.description.affiliationCERIS Instituto Superior Técnico Universidade de Lisboa
dc.description.affiliationDepartamento de Engenharia Mecânica Centro Tecnológico UFES - Universidade Federal do Espírito Santo
dc.description.affiliationUnespDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.1177/14759217221094500
dc.identifier.citationStructural Health Monitoring.
dc.identifier.doi10.1177/14759217221094500
dc.identifier.issn1741-3168
dc.identifier.issn1475-9217
dc.identifier.scopus2-s2.0-85131174562
dc.identifier.urihttp://hdl.handle.net/11449/240171
dc.language.isoeng
dc.relation.ispartofStructural Health Monitoring
dc.sourceScopus
dc.subjectdamage identification
dc.subjectdomain adaptation
dc.subjectGaussian process regression
dc.subjectStructural Health Monitoring
dc.subjecttransfer component analysis
dc.subjectTransfer learning
dc.titleDamage quantification using transfer component analysis combined with Gaussian process regressionen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-9611-9692[1]
unesp.author.orcid0000-0001-6430-3746[2]
unesp.author.orcid0000-0002-9168-6903[3]
unesp.author.orcid0000-0002-1093-8479[4]

Arquivos

Coleções