Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A green approach for genistein and apigenin extraction optimization from by-products of soybean crops

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Soybeans’ genistein and its isomer apigenin are widely studied bioactive compounds owing to their therapeutic potential for treating various health disfunctions. A green extraction of both from soy by-products could lead to a valuable and sustainable approach to adding value to these materials in a biorefinery context. Here Hansen Solubility Parameters (HSP) and the Conductor-like Screening MOdel for Real Solvents (COSMO-RS) were applied to screen green molecular solvents and Natural Eutectic Solvents for the extraction of genistein and apigenin from soy by-products. The predicted solubilities of genistein and apigenin in 18 shortlisted candidates were experimentally tested by dynamic maceration, the most industrially implemented natural products extraction technique. EtOH:H2O (8:2, v/v) and natural eutectic solvent (NAES) betaine:ethylene glycol (1:2, mol/mol) showed the highest performance. These were selected for extraction optimizations by Design of Experiments from soy branches, the largest by-product by mass. The optimum condition of each solvent was applied to extract all other parts of soy collected post-mechanical harvesting. The highest value of apigenin, 591.49 ± 26.7 μg/g, was achieved from soy pods with EtOH:H2O (8:2, v/v), while the highest of genistein, 54.04 ± 3.39 μg/g, was achieved from soybeans using the same solvent. Our findings highlight the necessity of exercising caution when interpreting in silico outcomes in the context of metabolite extractions from complex matrices. A trade-off between in silico solvent screening and experimental work should be followed when developing new phytochemical extraction processes. Furthermore, soy by-products emerged as competitive candidates for a long-term source of the bioactive apigenin in a biorefinery context.

Descrição

Palavras-chave

Bioactive compounds, Biorefinery, Computational predictions, Green solvents

Idioma

Inglês

Citação

Sustainable Chemistry and Pharmacy, v. 37.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências Agronômicas
FCA
Campus: Botucatu


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso