A green approach for genistein and apigenin extraction optimization from by-products of soybean crops
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Soybeans’ genistein and its isomer apigenin are widely studied bioactive compounds owing to their therapeutic potential for treating various health disfunctions. A green extraction of both from soy by-products could lead to a valuable and sustainable approach to adding value to these materials in a biorefinery context. Here Hansen Solubility Parameters (HSP) and the Conductor-like Screening MOdel for Real Solvents (COSMO-RS) were applied to screen green molecular solvents and Natural Eutectic Solvents for the extraction of genistein and apigenin from soy by-products. The predicted solubilities of genistein and apigenin in 18 shortlisted candidates were experimentally tested by dynamic maceration, the most industrially implemented natural products extraction technique. EtOH:H2O (8:2, v/v) and natural eutectic solvent (NAES) betaine:ethylene glycol (1:2, mol/mol) showed the highest performance. These were selected for extraction optimizations by Design of Experiments from soy branches, the largest by-product by mass. The optimum condition of each solvent was applied to extract all other parts of soy collected post-mechanical harvesting. The highest value of apigenin, 591.49 ± 26.7 μg/g, was achieved from soy pods with EtOH:H2O (8:2, v/v), while the highest of genistein, 54.04 ± 3.39 μg/g, was achieved from soybeans using the same solvent. Our findings highlight the necessity of exercising caution when interpreting in silico outcomes in the context of metabolite extractions from complex matrices. A trade-off between in silico solvent screening and experimental work should be followed when developing new phytochemical extraction processes. Furthermore, soy by-products emerged as competitive candidates for a long-term source of the bioactive apigenin in a biorefinery context.
Descrição
Palavras-chave
Bioactive compounds, Biorefinery, Computational predictions, Green solvents
Idioma
Inglês
Citação
Sustainable Chemistry and Pharmacy, v. 37.




