Enhanced multi-wavelength holographic profilometry by laser mode selection
dc.contributor.author | Muramatsu, Mikiya | |
dc.contributor.author | Barbosa, Eduardo A. | |
dc.contributor.author | Lima, Eduardo A. [UNESP] | |
dc.contributor.author | Gesualdi, Marcos R.R. | |
dc.contributor.institution | Instituto de Física | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | University of Vale do Paraiba | |
dc.date.accessioned | 2014-05-27T11:22:00Z | |
dc.date.available | 2014-05-27T11:22:00Z | |
dc.date.issued | 2006-10-19 | |
dc.description.abstract | The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection. | en |
dc.description.affiliation | Instituto de Física, 187, Cidade Universitaria, CEP 05508-900 São Paulo - SP | |
dc.description.affiliation | Faculdade de Tecnologia de São Paulo CEETEPS UNESP, Pça Cel Fernando Prestes, 30, 01124-060, São Paulo - SP | |
dc.description.affiliation | Research and Development Institute-IPD University of Vale do Paraiba, Sao Jose dos Campos - SP | |
dc.description.affiliationUnesp | Faculdade de Tecnologia de São Paulo CEETEPS UNESP, Pça Cel Fernando Prestes, 30, 01124-060, São Paulo - SP | |
dc.identifier | http://dx.doi.org/10.1117/12.695337 | |
dc.identifier.citation | Proceedings of SPIE - The International Society for Optical Engineering, v. 6341. | |
dc.identifier.doi | 10.1117/12.695337 | |
dc.identifier.issn | 0277-786X | |
dc.identifier.scopus | 2-s2.0-33749849959 | |
dc.identifier.uri | http://hdl.handle.net/11449/69175 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Diode lasers | |
dc.subject | Holographic interferometry | |
dc.subject | Photorefractive crystals | |
dc.subject | Free spectral range (FSR) | |
dc.subject | Holographic images | |
dc.subject | Phase stepping technique (PST) | |
dc.subject | Holograms | |
dc.subject | Laser modes | |
dc.subject | Optical variables control | |
dc.subject | Semiconductor lasers | |
dc.subject | Profilometry | |
dc.title | Enhanced multi-wavelength holographic profilometry by laser mode selection | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://proceedings.spiedigitallibrary.org/ss/TermsOfUse.aspx | |
dspace.entity.type | Publication |