Logo do repositório

Hydrogen storage on the lithium and sodium-decorated inorganic graphenylene

dc.contributor.authorMartins, Nicolas F. [UNESP]
dc.contributor.authorMaia, Ary S.
dc.contributor.authorLaranjeira, José A.S. [UNESP]
dc.contributor.authorFabris, Guilherme S.L.
dc.contributor.authorAlbuquerque, Anderson R.
dc.contributor.authorSambrano, Julio R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Paraíba
dc.contributor.institutionFederal University of Pelotas
dc.contributor.institutionFederal University of Rio Grande do Norte
dc.date.accessioned2025-04-29T20:16:55Z
dc.date.issued2024-01-02
dc.description.abstractEfficient H2 storage is one of the keys to the energy transition toward global sustainability. Hydrogen energy sources on functionalized 2D materials by metals have been shown as promising alternatives for clean energy systems. In a particular way, we have demonstrated here that the inorganic graphenylene-like silicon carbide (IGP-SiC) weakly adsorbs H2. At the same time, the Li/Na decoration significantly enhances the H2 interaction, accommodating up to 48H2 molecules by a stronger physisorption. Also, scanning bond critical points (BCPs) confirms a great interaction between the Li(Na)@IGP-SiC systems and the hydrogen, a distinct scenario for the pristine IGP-SiC. Gravimetrically, hydrogen densities reach 8.27 wt% (Li) and 6.78 wt% (Na), exceeding the U.S. Department of Energy (5.6 wt%) benchmark. Regarding thermodynamic stability, the desorption temperatures at ambient conditions are suitable for hydrogen storage devices. Therefore, Li(Na)@IGP-SiC systems emerge as high-capacity hydrogen storage materials.en
dc.description.affiliationModeling and Molecular Simulation Group São Paulo State University, SP
dc.description.affiliationChemistry Department Federal University of Paraíba, PB
dc.description.affiliationPost-Graduate Program in Materials Science and Engineering Federal University of Pelotas, RS
dc.description.affiliationChemistry Institute Federal University of Rio Grande do Norte, RN
dc.description.affiliationUnespModeling and Molecular Simulation Group São Paulo State University, SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 150187/2023
dc.description.sponsorshipIdCNPq: 307213/2021–8
dc.description.sponsorshipIdCAPES: 88887.827928/2023-00
dc.format.extent98-107
dc.identifierhttp://dx.doi.org/10.1016/j.ijhydene.2023.10.328
dc.identifier.citationInternational Journal of Hydrogen Energy, v. 51, p. 98-107.
dc.identifier.doi10.1016/j.ijhydene.2023.10.328
dc.identifier.issn0360-3199
dc.identifier.scopus2-s2.0-85176437194
dc.identifier.urihttps://hdl.handle.net/11449/309829
dc.language.isoeng
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.sourceScopus
dc.subject2D materials
dc.subjectBiphenylene sheet
dc.subjectDFT
dc.subjectGraphenylene
dc.subjectHydrogen storage
dc.subjectMetal decoration
dc.titleHydrogen storage on the lithium and sodium-decorated inorganic graphenyleneen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções