Logotipo do repositório
 

Publicação:
Determination of Harmonic Parameters in Pathological Voices—Efficient Algorithm

dc.contributor.authorFernandes, Joana Filipa Teixeira
dc.contributor.authorFreitas, Diamantino
dc.contributor.authorJunior, Arnaldo Candido [UNESP]
dc.contributor.authorTeixeira, João Paulo
dc.contributor.institutionInstituto Politécnico de Bragança
dc.contributor.institutionUniversity of Porto (FEUP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:54:21Z
dc.date.available2023-07-29T12:54:21Z
dc.date.issued2023-02-01
dc.description.abstractFeatured Application: The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.en
dc.description.affiliationResearch Centre in Digitalization and Intelligent Robotics (CeDRI) Instituto Politécnico de Bragança, Campus de Santa Apolónia
dc.description.affiliationFaculty of Engineering University of Porto (FEUP)
dc.description.affiliationInstitute of Biosciences Language and Physical Sciences São Paulo State University
dc.description.affiliationLaboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia
dc.description.affiliationApplied Management Research Unit (UNIAG) Instituto Politécnico de Bragança, Campus de Santa Apolónia
dc.description.affiliationUnespInstitute of Biosciences Language and Physical Sciences São Paulo State University
dc.identifierhttp://dx.doi.org/10.3390/app13042333
dc.identifier.citationApplied Sciences (Switzerland), v. 13, n. 4, 2023.
dc.identifier.doi10.3390/app13042333
dc.identifier.issn2076-3417
dc.identifier.scopus2-s2.0-85149282474
dc.identifier.urihttp://hdl.handle.net/11449/246925
dc.language.isoeng
dc.relation.ispartofApplied Sciences (Switzerland)
dc.sourceScopus
dc.subjectautocorrelation
dc.subjectautocorrelation algorithm
dc.subjectharmonic to noise ratio
dc.subjectHNR algorithm
dc.subjectnoise to harmonic ratio
dc.subjectvoice disorder parameters
dc.titleDetermination of Harmonic Parameters in Pathological Voices—Efficient Algorithmen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-0618-4627[1]
unesp.author.orcid0000-0002-6679-5702[4]

Arquivos

Coleções