Logotipo do repositório
 

Publicação:
Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In the present work, an attempt was made to experimentally quantify the boiling heat transfer coefficient (BHTC) of graphene oxide-water nano-suspension (NS) inflow boiling heat transfer regime. The NS was prepared at weight fractions of 0.025, 0.05, and 0.1% using the two-step method and further stabilized for 17 days (at wt% = 0.1). Results showed that the presence of graphene oxide nanoplatelets (GNPs) imposed an extreme fouling thermal resistance (FTR) to the surface, which caused a reduction in the BHTC over 1000 min of continuous operation after the CHF point. This was mainly due to the presence of the graphene oxide on the surface, which created a surficial fouling layer and heat accumulation on the surface. Instead, the sedimentation layer promoted the critical heat flux (CHF) point such that the point for water was 1370 kW/m2 reaching 1640 kW/m2 for NS at wt% = 0.1. Likewise, the highest BHTC of 17.4 kW/(m2K) at Re = 10,950 was obtained. Also, with increasing the heat flux and flow rate, the BHTC increased. The same trend was also identified with a mass fraction of GNPs up to CHF point. The increase in the BHTC was attributed to the intensification of the Brownian motion and thermophoresis effect in the boiling micro-layer close to the surface.

Descrição

Palavras-chave

Graphene oxide, Nano-suspension, Nanoplatelets, Particulate fouling, Thermal evaluation

Idioma

Inglês

Como citar

Powder Technology, v. 377, p. 10-19.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação