Logotipo do repositório
 

Publicação:
Internet of Things: A survey on machine learning-based intrusion detection approaches

dc.contributor.authorCosta, Kelton A. P. da [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorLisboa, Celso O. [UNESP]
dc.contributor.authorMunoz, Roberto
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Valparaiso
dc.contributor.institutionUniv Fortaleza
dc.date.accessioned2019-10-04T12:36:23Z
dc.date.available2019-10-04T12:36:23Z
dc.date.issued2019-03-14
dc.description.abstractIn the world scenario, concerns with security and privacy regarding computer networks are always increasing. Computer security has become a necessity due to the proliferation of information technologies in everyday life. The increase in the number of Internet accesses and the emergence of new technologies, such as the Internet of Things (IoT paradigm, are accompanied by new and modern attempts to invade computer systems and networks. Companies are increasingly investing in studies to optimize the detection of these attacks. Institutions are selecting intelligent techniques to test and verify by comparing the best rates of accuracy. This research, therefore, focuses on rigorous state-of-the-art literature on Machine Learning Techniques applied in Internet-of-Things and Intrusion Detection for computer network security. The work aims, therefore, recent and in-depth research of relevant works that deal with several intelligent techniques and their applied intrusion detection architectures in computer networks with emphasis on the Internet of Things and machine learning. More than 95 works on the subject were surveyed, spanning across different themes related to security issues in loT environments. (C) 2019 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUniv Valparaiso, Sch Informat Engn, Valparaiso, Chile
dc.description.affiliationUniv Fortaleza, Grad Program Appl Informat, Fortaleza, Ceara, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/22905-6
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 429003/2018 - 8
dc.description.sponsorshipIdCNPq: 304315/2017 - 6
dc.description.sponsorshipIdCNPq: 430274/2018 - 1
dc.description.sponsorshipIdCNPq: 307066/2017 - 7
dc.description.sponsorshipIdCNPq: 427968/2018 - 6
dc.format.extent147-157
dc.identifierhttp://dx.doi.org/10.1016/j.comnet.2019.01.023
dc.identifier.citationComputer Networks. Amsterdam: Elsevier Science Bv, v. 151, p. 147-157, 2019.
dc.identifier.doi10.1016/j.comnet.2019.01.023
dc.identifier.issn1389-1286
dc.identifier.urihttp://hdl.handle.net/11449/185543
dc.identifier.wosWOS:000461725700011
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputer Networks
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSecurity networks
dc.subjectMachine learning
dc.subjectInternet-of-Things
dc.subjectSurvey
dc.subjectIntelligent techniques
dc.titleInternet of Things: A survey on machine learning-based intrusion detection approachesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0003-1302-0206[4]
unesp.author.orcid0000-0003-3886-4309[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos