Logotipo do repositório
 

Publicação:
Fisher information of the Kuramoto model: A geometric reading on synchronization

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points.

Descrição

Palavras-chave

Information geometry, Nonlinearity, Symmetry breaking, Synchronization

Idioma

Inglês

Como citar

Physica D: Nonlinear Phenomena, v. 423.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação