Logotipo do repositório
 

Publicação:
Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator

dc.contributor.authorScarabello, Marluce da Cruz [UNESP]
dc.contributor.authorMessias, Marcelo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-12-03T13:11:40Z
dc.date.available2014-12-03T13:11:40Z
dc.date.issued2014-01-01
dc.description.abstractIn this paper, we make a bifurcation analysis of a mathematical model for an electric circuit formed by the four fundamental electronic elements: one memristor, one capacitor, one inductor and one resistor. The considered model is given by a discontinuous piecewise linear system of ordinary differential equations, defined on three zones in R-3, determined by vertical bar z vertical bar < 1 (called the central zone) and vertical bar z vertical bar > 1 (the external zones). We show that the z-axis is filled by equilibrium points of the system, and analyze the linear stability of the equilibria in each zone. Due to the existence of this line of equilibria, the phase space R-3 is foliated by invariant planes transversal to the z-axis and parallel to each other, in each zone. In this way, each solution is contained in a three-piece invariant set formed by part of a plane contained in the central zone, which is extended by two half planes in the external zones. We also show that the system may present nonlinear oscillations, given by the existence of infinitely many periodic orbits, each one belonging to one such invariant set and passing by two of the three zones or passing by the three zones. These orbits arise due to homoclinic and heteroclinic bifurcations, obtained varying one parameter in the studied model, and may also exist for some fixed sets of parameter values. This intricate phase space may bring some light to the understanding of these memristor properties. The analytical and numerical results obtained extend the analysis presented in [Itoh & Chua, 2009; Messias et al., 2010].en
dc.description.affiliationUNESP Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Sao Paulo, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 09/11699-0
dc.description.sponsorshipIdFAPESP: 12/18413-7
dc.description.sponsorshipIdCNPq: 308315/2012-0
dc.format.extent18
dc.identifierhttp://dx.doi.org/10.1142/S0218127414300018
dc.identifier.citationInternational Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 24, n. 1, 18 p., 2014.
dc.identifier.doi10.1142/S0218127414300018
dc.identifier.issn0218-1274
dc.identifier.lattes3757225669056317
dc.identifier.urihttp://hdl.handle.net/11449/113405
dc.identifier.wosWOS:000332042700001
dc.language.isoeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Bifurcation and Chaos
dc.relation.ispartofjcr1.501
dc.relation.ispartofsjr0,568
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectMemristor oscillatoren
dc.subjectdiscontinuous piecewise linear systemsen
dc.subjectFilippov conventionsen
dc.subjectheteroclinic bifurcationen
dc.subjecthomoclinic bifurcationen
dc.subjectnonlinear oscillationen
dc.titleBifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillatoren
dc.typeArtigo
dcterms.rightsHolderWorld Scientific Publ Co Pte Ltd
dspace.entity.typePublication
unesp.author.lattes3757225669056317
unesp.author.orcid0000-0003-2269-7091[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentMatemática e Computação - FCTpt

Arquivos