High-Frequency Isotope Compositions Reveal Different Cloud-Top and Vertical Stratiform Rainfall Structures in the Inland Tropics of Brazil
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Understanding the key drivers controlling rainfall stable isotope variations in inland tropical regions remains a global challenge. We present novel high-frequency isotope data (5–30 min intervals) to disentangle the evolution of six stratiform rainfall events (N = 112) during the passage of convective systems in inland Brazil (September 2019–June 2020). These systems produced stratiform rainfall of variable cloud features. Depleted stratiform events (δ18Oinitial ≤ −4.2‰ and δ18Omean ≤ −6.1‰) were characterized by cooler cloud-top temperatures (≤−38°C), larger areas (≥48 km2), higher liquid-ice ratios (≥3.1), and higher melting layer heights (≥3.8 km), compared to enriched stratiform events (δ18Oinitial ≥ −3.8‰ and δ18Omean ≥ −5.1‰). Cloud vertical structure variability was reflected in a wide range of δ18O temporal patterns and abrupt shifts in d-excess. Our findings provide a new perspective to the ongoing debate about isotopic variability and the partitioning of rainfall types across the tropics.
Descrição
Palavras-chave
stable isotopes, stratiform rainfall, tropical inland
Idioma
Inglês
Citação
Geophysical Research Letters, v. 51, n. 15, 2024.




