Repository logo
 

Publication:
Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm

dc.contributor.authorFrança Pereira, Felicia [UNESP]
dc.contributor.authorSussel Gonçalves Mendes, Tatiana [UNESP]
dc.contributor.authorJorge Coelho Simões, Silvio [UNESP]
dc.contributor.authorRoberto Magalhães de Andrade, Márcio
dc.contributor.authorLuiz Lopes Reiss, Mário
dc.contributor.authorFortes Cavalcante Renk, Jennifer
dc.contributor.authorCorreia da Silva Santos, Tatiany [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionMCTI
dc.contributor.institutionUFRGS - Federal University of Rio Grande do Sul
dc.contributor.institutionUniversity of Algarve
dc.date.accessioned2023-07-29T12:47:43Z
dc.date.available2023-07-29T12:47:43Z
dc.date.issued2023-03-01
dc.description.abstractEarthquakes, extreme rainfall, or human activity can all cause landslides. Several landslides occur each year around the world, often resulting in casualties and economic consequences. Landslide susceptibility mapping is considered to be the main technique for predicting the likelihood of an event based on the characteristics of the physical environment. Digital Terrain Model (DTM) is one of the fundamental data of modeling and is used to derive important conditional factors for detailed scale landslide susceptibility analyses. With this in mind, this study aimed to compare landslide susceptibility maps generated by Random Forest (RF) machine learning algorithm with data from Light Detection and Range (LiDAR) and Unmanned Aerial Vehicle (UAV). To this end, the performance achieved in prediction was evaluated using statistical evaluation measures based on training and validation datasets. The obtained results showed that the accuracy of both models is greater than 0.70, the area under the curve (AUC) is greater than 0.80, and the model generated from the LiDAR data is more accurate. The results also showed that the data from UAV have potential to use in landslide susceptibility mapping on an intra-urban scale, contributing to studies in risk areas without available data.en
dc.description.affiliationGraduate Program in Natural Disasters UNESP/CEMADEN, Estrada Doutor Altino Bondesan, São Paulo
dc.description.affiliationDepartment of Environmental Engineering Institute of Science and Technology São Paulo State University - Unesp, Estrada Doutor Altino Bondesan, São Paulo
dc.description.affiliationNational Center for Monitoring and Early Warning of Natural Disasters - CEMADEN MCTI, Estrada Doutor Altino Bondesan, São Paulo
dc.description.affiliationLAFOTO - Laboratory of Photogrammetry Research Department of Geodesy UFRGS - Federal University of Rio Grande do Sul, Av. Bento Gonçalves, Rio Grande do Sul
dc.description.affiliationCenter for Marine and Environmental Research - CIMA University of Algarve, Estr. da Penha
dc.description.affiliationUnespGraduate Program in Natural Disasters UNESP/CEMADEN, Estrada Doutor Altino Bondesan, São Paulo
dc.description.affiliationUnespDepartment of Environmental Engineering Institute of Science and Technology São Paulo State University - Unesp, Estrada Doutor Altino Bondesan, São Paulo
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.description.sponsorshipIdFinanciadora de Estudos e Projetos: 0304/16
dc.format.extent579-600
dc.identifierhttp://dx.doi.org/10.1007/s10346-022-02001-7
dc.identifier.citationLandslides, v. 20, n. 3, p. 579-600, 2023.
dc.identifier.doi10.1007/s10346-022-02001-7
dc.identifier.issn1612-5118
dc.identifier.issn1612-510X
dc.identifier.scopus2-s2.0-85146621287
dc.identifier.urihttp://hdl.handle.net/11449/246684
dc.language.isoeng
dc.relation.ispartofLandslides
dc.sourceScopus
dc.subjectDTM
dc.subjectLandslide susceptibility model
dc.subjectLiDAR
dc.subjectRandom Forest
dc.subjectUAV
dc.titleComparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithmen
dc.typeResenha
dspace.entity.typePublication
unesp.author.orcid0000-0002-9505-0531[1]

Files

Collections