Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory

dc.contributor.authorAlbuquerque, Afonso Marques [UNESP]
dc.contributor.authorNespolo, Raphael Silva [UNESP]
dc.contributor.authorTommaselli, Antonio Maria Garcia [UNESP]
dc.contributor.authorMartins-Neto, Rorai Perreira
dc.contributor.authorImai, Nilton Nobuhiro [UNESP]
dc.contributor.authorAlves, Daniele Barroca Marra [UNESP]
dc.contributor.authorGouveia, Tayna Aparecida Ferreira [UNESP]
dc.contributor.authorJerez, Gabriel Oliveira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCzech University of Life Sciences Prague
dc.date.accessioned2025-04-29T18:43:18Z
dc.date.issued2024-11-04
dc.description.abstractThe Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.en
dc.description.affiliationFaculty of Science and Technology São Paulo State University
dc.description.affiliationFaculty of Forestry and Wood Sciences Czech University of Life Sciences Prague
dc.description.affiliationUnespFaculty of Science and Technology São Paulo State University
dc.description.sponsorshipČeská Zemědělská Univerzita v Praze
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 116545/2023-2
dc.description.sponsorshipIdCNPq: 151351/2019-8
dc.description.sponsorshipIdFAPESP: 2021/05285-0
dc.description.sponsorshipIdFAPESP: 2021/06029-7
dc.description.sponsorshipIdFAPESP: 2023/14739-0
dc.description.sponsorshipIdCNPq: 303670/2018-5
dc.description.sponsorshipIdCNPq: 306112/2023-0
dc.description.sponsorshipIdCNPq: 308747/2021-6
dc.description.sponsorshipIdCAPES: 88887.310313/2018-00
dc.description.sponsorshipIdCAPES: 88887.898553/2023-00
dc.description.sponsorshipIdCAPES: 88887.961778/2024-00
dc.format.extent13-19
dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024
dc.identifier.citationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024.
dc.identifier.doi10.5194/isprs-annals-X-3-2024-13-2024
dc.identifier.issn2194-9050
dc.identifier.issn2194-9042
dc.identifier.scopus2-s2.0-85212441099
dc.identifier.urihttps://hdl.handle.net/11449/299734
dc.language.isoeng
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.sourceScopus
dc.subjectMachine learning
dc.subjectMeteorological stations
dc.subjectRandom Forest
dc.subjectZenith Wet Delay (ZWD)
dc.titleMachine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territoryen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.author.orcid0000-0003-0483-1103[3]
unesp.author.orcid0000-0001-6893-2144[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos