Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
| dc.contributor.author | Albuquerque, Afonso Marques [UNESP] | |
| dc.contributor.author | Nespolo, Raphael Silva [UNESP] | |
| dc.contributor.author | Tommaselli, Antonio Maria Garcia [UNESP] | |
| dc.contributor.author | Martins-Neto, Rorai Perreira | |
| dc.contributor.author | Imai, Nilton Nobuhiro [UNESP] | |
| dc.contributor.author | Alves, Daniele Barroca Marra [UNESP] | |
| dc.contributor.author | Gouveia, Tayna Aparecida Ferreira [UNESP] | |
| dc.contributor.author | Jerez, Gabriel Oliveira [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Czech University of Life Sciences Prague | |
| dc.date.accessioned | 2025-04-29T18:43:18Z | |
| dc.date.issued | 2024-11-04 | |
| dc.description.abstract | The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient. | en |
| dc.description.affiliation | Faculty of Science and Technology São Paulo State University | |
| dc.description.affiliation | Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague | |
| dc.description.affiliationUnesp | Faculty of Science and Technology São Paulo State University | |
| dc.description.sponsorship | Česká Zemědělská Univerzita v Praze | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | CNPq: 116545/2023-2 | |
| dc.description.sponsorshipId | CNPq: 151351/2019-8 | |
| dc.description.sponsorshipId | FAPESP: 2021/05285-0 | |
| dc.description.sponsorshipId | FAPESP: 2021/06029-7 | |
| dc.description.sponsorshipId | FAPESP: 2023/14739-0 | |
| dc.description.sponsorshipId | CNPq: 303670/2018-5 | |
| dc.description.sponsorshipId | CNPq: 306112/2023-0 | |
| dc.description.sponsorshipId | CNPq: 308747/2021-6 | |
| dc.description.sponsorshipId | CAPES: 88887.310313/2018-00 | |
| dc.description.sponsorshipId | CAPES: 88887.898553/2023-00 | |
| dc.description.sponsorshipId | CAPES: 88887.961778/2024-00 | |
| dc.format.extent | 13-19 | |
| dc.identifier | http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024 | |
| dc.identifier.citation | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024. | |
| dc.identifier.doi | 10.5194/isprs-annals-X-3-2024-13-2024 | |
| dc.identifier.issn | 2194-9050 | |
| dc.identifier.issn | 2194-9042 | |
| dc.identifier.scopus | 2-s2.0-85212441099 | |
| dc.identifier.uri | https://hdl.handle.net/11449/299734 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
| dc.source | Scopus | |
| dc.subject | Machine learning | |
| dc.subject | Meteorological stations | |
| dc.subject | Random Forest | |
| dc.subject | Zenith Wet Delay (ZWD) | |
| dc.title | Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| relation.isOrgUnitOfPublication.latestForDiscovery | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| unesp.author.orcid | 0000-0003-0483-1103[3] | |
| unesp.author.orcid | 0000-0001-6893-2144[8] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudente | pt |
