Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Carbon adsorption on waste biomass of passion fruit peel: A promising machine learning model for CO2 capture

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The alarming increase in the concentration of carbon dioxide (CO2) in the atmosphere, mainly due to human emissions, represents a significant threat to life. In this context, carbon capture and storage (CCS) technologies have emerged as promising solutions, such as adsorption on carbonaceous materials, standing out as a prominent approach. This study aims to quantify the maximum CO2 capture in the laboratory scale using functionalized activated carbon by passion fruit peel biomass (FACPFP) and to develop a simple and improved machine learning model to predict the capture of this greenhouse gas. FACPFP was successfully prepared through chemical activation with K2C2O4 and doping with ethylenediamine (EDA) at 700 °C and 1 h. The samples were thoroughly characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). CO2 sorption was assessed using functional density theory (DFT). For predictive model, multiple linear regression with cross-validation was used. Under CO2 atmosphere conditions, the textural parameters allowed to see the probable presence of ultra-micropores, the BET surface area, the total pore and micropore volume were 105 m²/g, 0.03 cm³ /g and 0.06 cm³ /g, respectively. The maximum CO2 adsorption capacity in the FACPFP reached about 2.2 mmol/g at 0 °C and 1 bar. The predictive model demonstrated an improvement of CO2 adsorption precision, raising it from 53% to 61% with cross-validation. This study also aims to stimulate future investigations in the area of CO2 capture, due to the extreme relevance of this topic.

Descrição

Palavras-chave

CO2 capture, Machine learning, Porous carbon

Idioma

Inglês

Citação

Journal of CO2 Utilization, v. 80.

Itens relacionados

Unidades

Item type:Unidade,
Instituto de Ciência e Tecnologia
ICT
Campus: Sorocaba


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso