Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Carbon adsorption on waste biomass of passion fruit peel: A promising machine learning model for CO2 capture

dc.contributor.authorPeres, Christiano Bruneli [UNESP]
dc.contributor.authorMorais, Leandro Cardoso de [UNESP]
dc.contributor.authorResende, Pedro Miguel Rebelo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionRua da Escola Industrial e Comercial de Nun 'Alvares
dc.contributor.institutionnº 644
dc.contributor.institutionUniversity of Porto
dc.date.accessioned2025-04-29T19:35:27Z
dc.date.issued2024-02-01
dc.description.abstractThe alarming increase in the concentration of carbon dioxide (CO2) in the atmosphere, mainly due to human emissions, represents a significant threat to life. In this context, carbon capture and storage (CCS) technologies have emerged as promising solutions, such as adsorption on carbonaceous materials, standing out as a prominent approach. This study aims to quantify the maximum CO2 capture in the laboratory scale using functionalized activated carbon by passion fruit peel biomass (FACPFP) and to develop a simple and improved machine learning model to predict the capture of this greenhouse gas. FACPFP was successfully prepared through chemical activation with K2C2O4 and doping with ethylenediamine (EDA) at 700 °C and 1 h. The samples were thoroughly characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). CO2 sorption was assessed using functional density theory (DFT). For predictive model, multiple linear regression with cross-validation was used. Under CO2 atmosphere conditions, the textural parameters allowed to see the probable presence of ultra-micropores, the BET surface area, the total pore and micropore volume were 105 m²/g, 0.03 cm³ /g and 0.06 cm³ /g, respectively. The maximum CO2 adsorption capacity in the FACPFP reached about 2.2 mmol/g at 0 °C and 1 bar. The predictive model demonstrated an improvement of CO2 adsorption precision, raising it from 53% to 61% with cross-validation. This study also aims to stimulate future investigations in the area of CO2 capture, due to the extreme relevance of this topic.en
dc.description.affiliationInstitute of Science and Technology São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Sorocaba Campus, Av. Três de Março, 511, Alto da Boa Vista, São Paulo
dc.description.affiliationPrometheus Polytechnic Institute of Viana do Castelo Rua da Escola Industrial e Comercial de Nun 'Alvares
dc.description.affiliationEscola Superior de Tecnologia e Gestão Instituto Politécnico de Viana do Castelo Avenida do Atlântico nº 644
dc.description.affiliationCEFT Faculty of Engineering University of Porto
dc.description.affiliationUnespInstitute of Science and Technology São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Sorocaba Campus, Av. Três de Março, 511, Alto da Boa Vista, São Paulo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2021/11104-8
dc.identifierhttp://dx.doi.org/10.1016/j.jcou.2024.102680
dc.identifier.citationJournal of CO2 Utilization, v. 80.
dc.identifier.doi10.1016/j.jcou.2024.102680
dc.identifier.issn2212-9820
dc.identifier.scopus2-s2.0-85183454134
dc.identifier.urihttps://hdl.handle.net/11449/304604
dc.language.isoeng
dc.relation.ispartofJournal of CO2 Utilization
dc.sourceScopus
dc.subjectCO2 capture
dc.subjectMachine learning
dc.subjectPorous carbon
dc.titleCarbon adsorption on waste biomass of passion fruit peel: A promising machine learning model for CO2 captureen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication0bc7c43e-b5b0-4350-9d05-74d892acf9d1
relation.isOrgUnitOfPublication.latestForDiscovery0bc7c43e-b5b0-4350-9d05-74d892acf9d1
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt

Arquivos