Carbon adsorption on waste biomass of passion fruit peel: A promising machine learning model for CO2 capture
| dc.contributor.author | Peres, Christiano Bruneli [UNESP] | |
| dc.contributor.author | Morais, Leandro Cardoso de [UNESP] | |
| dc.contributor.author | Resende, Pedro Miguel Rebelo | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Rua da Escola Industrial e Comercial de Nun 'Alvares | |
| dc.contributor.institution | nº 644 | |
| dc.contributor.institution | University of Porto | |
| dc.date.accessioned | 2025-04-29T19:35:27Z | |
| dc.date.issued | 2024-02-01 | |
| dc.description.abstract | The alarming increase in the concentration of carbon dioxide (CO2) in the atmosphere, mainly due to human emissions, represents a significant threat to life. In this context, carbon capture and storage (CCS) technologies have emerged as promising solutions, such as adsorption on carbonaceous materials, standing out as a prominent approach. This study aims to quantify the maximum CO2 capture in the laboratory scale using functionalized activated carbon by passion fruit peel biomass (FACPFP) and to develop a simple and improved machine learning model to predict the capture of this greenhouse gas. FACPFP was successfully prepared through chemical activation with K2C2O4 and doping with ethylenediamine (EDA) at 700 °C and 1 h. The samples were thoroughly characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). CO2 sorption was assessed using functional density theory (DFT). For predictive model, multiple linear regression with cross-validation was used. Under CO2 atmosphere conditions, the textural parameters allowed to see the probable presence of ultra-micropores, the BET surface area, the total pore and micropore volume were 105 m²/g, 0.03 cm³ /g and 0.06 cm³ /g, respectively. The maximum CO2 adsorption capacity in the FACPFP reached about 2.2 mmol/g at 0 °C and 1 bar. The predictive model demonstrated an improvement of CO2 adsorption precision, raising it from 53% to 61% with cross-validation. This study also aims to stimulate future investigations in the area of CO2 capture, due to the extreme relevance of this topic. | en |
| dc.description.affiliation | Institute of Science and Technology São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Sorocaba Campus, Av. Três de Março, 511, Alto da Boa Vista, São Paulo | |
| dc.description.affiliation | Prometheus Polytechnic Institute of Viana do Castelo Rua da Escola Industrial e Comercial de Nun 'Alvares | |
| dc.description.affiliation | Escola Superior de Tecnologia e Gestão Instituto Politécnico de Viana do Castelo Avenida do Atlântico nº 644 | |
| dc.description.affiliation | CEFT Faculty of Engineering University of Porto | |
| dc.description.affiliationUnesp | Institute of Science and Technology São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Sorocaba Campus, Av. Três de Março, 511, Alto da Boa Vista, São Paulo | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorshipId | FAPESP: #2021/11104-8 | |
| dc.identifier | http://dx.doi.org/10.1016/j.jcou.2024.102680 | |
| dc.identifier.citation | Journal of CO2 Utilization, v. 80. | |
| dc.identifier.doi | 10.1016/j.jcou.2024.102680 | |
| dc.identifier.issn | 2212-9820 | |
| dc.identifier.scopus | 2-s2.0-85183454134 | |
| dc.identifier.uri | https://hdl.handle.net/11449/304604 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Journal of CO2 Utilization | |
| dc.source | Scopus | |
| dc.subject | CO2 capture | |
| dc.subject | Machine learning | |
| dc.subject | Porous carbon | |
| dc.title | Carbon adsorption on waste biomass of passion fruit peel: A promising machine learning model for CO2 capture | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 0bc7c43e-b5b0-4350-9d05-74d892acf9d1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0bc7c43e-b5b0-4350-9d05-74d892acf9d1 | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocaba | pt |
