Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

EVALUATION OF TEST SPECIMEN SURFACE PREPARATION ON MACROSCOPIC COMPUTER VISION WOOD IDENTIFICATION

dc.contributor.authorRavindran, Prabu
dc.contributor.authorOwens, Frank C.
dc.contributor.authorCosta, Adriana
dc.contributor.authorRodrigues, Brunela Pollastrelli
dc.contributor.authorChavesta, Manuel
dc.contributor.authorMontenegro, Rolando
dc.contributor.authorShmulsky, Rubin
dc.contributor.authorWiedenhoeft, Alex C.
dc.contributor.institutionUniv Wisconsin Madison
dc.contributor.institutionUSDA
dc.contributor.institutionMississippi State Univ
dc.contributor.institutionClemson Univ
dc.contributor.institutionUniv Nacl Agr La Molina
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:13:53Z
dc.date.issued2023-11-01
dc.description.abstractPrevious studies on computer vision wood identification (CVWID) have assumed or implied that the quality of sanding or knifing preparation of the transverse surface of wood specimens could influence model performance, but its impact is unknown and largely unexplored. This study investigates how variations in surface preparation quality of test specimens could affect the predictive accuracy of a previously published 24-class XyloTron CVWID model for Peruvian timbers. The model was trained on images of Peruvian wood specimens prepared at 1500 sanding grit and tested on images of independent specimens (not used in training) prepared across a series of progressively coarser sanding grits (1500, 800, 600, 400, 240, 180, and 80) and high-quality knife cuts. The results show that while there was a drop in performance at the lowest sanding grit of 80, most of the higher grits and knife cuts did not exhibit statistically significant differences in predictive accuracy. These results lay the groundwork for a future larger-scale investigation into how the quality of surface preparation in both training and testing data will impact CVWID model accuracy.en
dc.description.affiliationUniv Wisconsin Madison, Dept Bot, Madison, WI USA
dc.description.affiliationUSDA, Forest Serv Forest Prod Lab, Ctr Wood Anat Res, Madison, WI USA
dc.description.affiliationMississippi State Univ, Dept Sustainable Bioprod, Starkville, MS 39759 USA
dc.description.affiliationClemson Univ, Dept Forestry & Environm Conservat, Clemson, SC USA
dc.description.affiliationUniv Nacl Agr La Molina, Dept Wood Ind, Lima, Peru
dc.description.affiliationUniv Estadual Paulista Botucatu, Dept Ciencias Biol Bot, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista Botucatu, Dept Ciencias Biol Bot, Botucatu, SP, Brazil
dc.description.sponsorshipU.S. Department of State via Interagency
dc.description.sponsorshipForest Stewardship Council
dc.description.sponsorshipWisconsin Idea Baldwin Grant
dc.description.sponsorshipU.S. Department of Agriculture (USDA)
dc.description.sponsorshipResearch, Education, and Economics (REE)
dc.description.sponsorshipAgriculture Research Service (ARS)
dc.description.sponsorshipAdministrative and Financial Management (AFM)
dc.description.sponsorshipFinancial Management and Accounting Division (FMAD)
dc.description.sponsorshipAgreements Management Branch (GAMB)
dc.description.sponsorshipIdU.S. Department of State via Interagency: 19318814Y0010
dc.description.sponsorshipIdAgreements Management Branch (GAMB): 58-0204-9-164
dc.format.extent176-202
dc.identifierhttp://dx.doi.org/10.22382/wfs-2023-15
dc.identifier.citationWood And Fiber Science. Madison: Soc Wood Sci Technol, v. 55, n. 2, p. 176-202, 2023.
dc.identifier.doi10.22382/wfs-2023-15
dc.identifier.issn0735-6161
dc.identifier.urihttps://hdl.handle.net/11449/308896
dc.identifier.wosWOS:001107574200001
dc.language.isoeng
dc.publisherSoc Wood Sci Technol
dc.relation.ispartofWood And Fiber Science
dc.sourceWeb of Science
dc.subjectXyloTron
dc.subjectcomputer vision wood identification
dc.subjectmachine learning
dc.subjectdeep learning
dc.subjectsurface preparation
dc.titleEVALUATION OF TEST SPECIMEN SURFACE PREPARATION ON MACROSCOPIC COMPUTER VISION WOOD IDENTIFICATIONen
dc.typeArtigopt
dcterms.rightsHolderSoc Wood Sci Technol
dspace.entity.typePublication
unesp.author.orcid0000-0001-9108-1202[4]
unesp.author.orcid0000-0002-5774-6159[5]

Arquivos

Coleções