Logo do repositório

Entropy-Based Filter Selection in CNNs Applied to Text Classification

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Filter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters.

Descrição

Palavras-chave

Convolutional neural networks, Filter pruning, Mutual information

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso