Improving Parkinson's disease identification through evolutionary-based feature selection
dc.contributor.author | Spadoto, André A. | |
dc.contributor.author | Guido, Rodrigo C. | |
dc.contributor.author | Carnevali, Felipe L. | |
dc.contributor.author | Pagnin, Andre F. [UNESP] | |
dc.contributor.author | Falcão, Alexandre X. | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:26:20Z | |
dc.date.available | 2014-05-27T11:26:20Z | |
dc.date.issued | 2011-12-26 | |
dc.description.abstract | Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE. | en |
dc.description.affiliation | Institute of Physics at São Carlos University of São Paulo, São Carlos | |
dc.description.affiliation | Department of Computing Federal University of São Carlos, São Carlos | |
dc.description.affiliation | Institute of Computing University of Campinas, Campinas | |
dc.description.affiliation | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | |
dc.description.affiliationUnesp | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | |
dc.format.extent | 7857-7860 | |
dc.identifier | http://dx.doi.org/10.1109/IEMBS.2011.6091936 | |
dc.identifier.citation | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 7857-7860. | |
dc.identifier.doi | 10.1109/IEMBS.2011.6091936 | |
dc.identifier.issn | 1557-170X | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.lattes | 6542086226808067 | |
dc.identifier.orcid | 0000-0002-0924-8024 | |
dc.identifier.scopus | 2-s2.0-84055219309 | |
dc.identifier.uri | http://hdl.handle.net/11449/73086 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Scopus | |
dc.subject | Automatic identification | |
dc.subject | Parkinson's disease | |
dc.subject | Possible solutions | |
dc.subject | Training phase | |
dc.subject | Automation | |
dc.subject | Neurodegenerative diseases | |
dc.subject | Feature extraction | |
dc.title | Improving Parkinson's disease identification through evolutionary-based feature selection | en |
dc.type | Trabalho apresentado em evento | pt |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dspace.entity.type | Publication | |
relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.lattes | 6542086226808067[2] | |
unesp.author.orcid | 0000-0002-0924-8024[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |