Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Manifold information through neighbor embedding projection for image retrieval

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Although studied for decades, constructing effective image retrieval remains an open problem in a wide range of relevant applications. Impressive advances have been made to represent image content, mainly supported by the development of Convolution Neural Networks (CNNs) and Transformer-based models. On the other hand, effectively computing the similarity between such representations is still challenging, especially in collections in which images are structured in manifolds. This paper introduces a novel solution to this problem based on dimensionality reduction techniques, often used for data visualization. The key idea consists in exploiting the spatial relationships defined by neighbor embedding data visualization methods, such as t-SNE and UMAP, to compute a more effective distance/similarity measure between images. Experiments were conducted on several widely-used datasets. Obtained results indicate that the proposed approach leads to significant gains in comparison to the original feature representations. Experiments also indicate competitive results in comparison with state-of-the-art image retrieval approaches.

Descrição

Palavras-chave

Data visualization, Dimensionality reduction, Image retrieval, t-SNE, UMAP

Idioma

Inglês

Citação

Pattern Recognition Letters, v. 183, p. 17-25.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso