Logotipo do repositório
 

Publicação:
Mapping gaps in sugarcane by UAV RGB imagery: the lower and earlier the flight, the more accurate

dc.contributor.authorBarbosa Júnior, Marcelo Rodrigues [UNESP]
dc.contributor.authorTedesco, Danilo [UNESP]
dc.contributor.authorCorrêa, Rafael de Graaf [UNESP]
dc.contributor.authorMoreira, Bruno Rafael de Almeida [UNESP]
dc.contributor.authorSilva, Rouverson Pereira da [UNESP]
dc.contributor.authorZerbato, Cristiano [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-28T19:22:10Z
dc.date.available2023-03-28T19:22:10Z
dc.date.issued2021-12-18
dc.description.abstractImagery data prove useful for mapping gaps in sugarcane. However, if the quality of data is poor or the moment of flying an aerial platform is not compatible to phenology, prediction becomes rather inaccurate. Therefore, we analyzed how the combination of pixel size (3.5, 6.0 and 8.2 cm) and height of plant (0.5, 0.9, 1.0, 1.2 and 1.7 m) could impact the mapping of gaps on unmanned aerial vehicle (UAV) RGB imagery. Both factors significantly influenced mapping. The larger the pixel or plant, the less accurate the prediction. Error was more likely to occur for regions on the field where actively growing vegetation overlapped at gaps of 0.5 m. Hence, even 3.5 cm pixel did not capture them. Overall, pixels of 3.5 cm and plants of 0.5 m outstripped other combinations, making it the most accurate (absolute error ~0.015 m) solution for remote mapping on the field. Our insights are timely and provide forward knowledge that is particularly relevant to progress in the field’s prominence of flying a UAV to map gaps. They will enable producers to make decisions on replanting and fertilizing site-specific high-resolution imagery data.en
dc.description.affiliationUniversidade Estadual Paulista (Unesp)
dc.description.affiliationDepartment of Engineering and Mathematical Sciences, School of Veterinarian and Agricultural Sciences, São Paulo State University (Unesp)
dc.description.affiliationUnespDepartment of Engineering and Mathematical Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (Unesp)
dc.description.sponsorshipNão recebi financiamento
dc.description.versionVersão final do editorpt
dc.identifierhttp://dx.doi.org/10.3390/agronomy11122578
dc.identifier.citationAgronomy, v. 11, n. 12, 2021.
dc.identifier.doi10.3390/agronomy11122578
dc.identifier.issn2073-4395
dc.identifier.lattes7949757920964231
dc.identifier.lattes8452713373026564
dc.identifier.lattes4381738825835872
dc.identifier.lattes0561949994685915
dc.identifier.lattes8183357481929077
dc.identifier.lattes4250405119449237
dc.identifier.orcid0000-0002-7207-2156
dc.identifier.orcid0000-0003-1875-1489
dc.identifier.orcid0000-0002-8686-4082
dc.identifier.orcid0000-0001-8852-2548
dc.identifier.orcid0000-0002-4534-5454
dc.identifier.scopus2-s2.0-85121722542
dc.identifier.urihttp://hdl.handle.net/11449/242707
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute
dc.relation.ispartofAgronomyen
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectPixel size
dc.subjectPlant height
dc.subjectRemote sensing
dc.subjectSaccharum spp
dc.subjectUnmanned aerial vehicle
dc.subjectRemote sensingen
dc.subjectCana-de-açúcarpt
dc.subjectSugarcaneen
dc.subjectDroneen
dc.titleMapping gaps in sugarcane by UAV RGB imagery: the lower and earlier the flight, the more accurateen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.departmentEngenharia Rural - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
barbosajunior_mr_versaoeditor_jabo_mapping.pdf
Tamanho:
1.83 MB
Formato:
Adobe Portable Document Format