Logo do repositório

Detection and Classification of Defects in 3D Printing using a Novel Skewness and Kurtosis-based Parameter of Sound Signals and Machine Learning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

This work proposes a monitoring strategy based on kurtosis and skewness of sound signals to detect and classify the machine conditions in fused deposition modeling (FDM). The methodology consisted in experimental tests conducted in a 3D printer in which an electret microphone was attached to the extruder support. The signals were acquired by an oscilloscope at 200 kHz, and then digitally processed in MATLAB. The results showed that the proposed parameter along with machine learning models produced a significant improvement when compared to the use of the skewness and kurtosis alone.

Descrição

Palavras-chave

3D printing, Condition Monitoring, Fused Deposition Modeling, Machine learning

Idioma

Inglês

Citação

2024 International Conference on Control, Automation and Diagnosis, ICCAD 2024.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso