Publicação: Aprendizado de máquina simbólico e técnicas fractais para caracterizar rejeição em biópsia miocárdica
dc.contributor.author | Carvalho, V. O. [UNESP] | |
dc.contributor.author | Neves, L. A. [UNESP] | |
dc.contributor.author | De Godoy, M. F. | |
dc.contributor.author | Moreira, R. D. | |
dc.contributor.author | Moriel, A. R. | |
dc.contributor.author | Murta, L. O. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Faculdade de Medicina de São José do Rio Preto (FAMERP) | |
dc.contributor.institution | Instituto de Anatomia Patológica e Citopatologia | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2014-05-27T11:28:42Z | |
dc.date.available | 2014-05-27T11:28:42Z | |
dc.date.issued | 2013-03-26 | |
dc.description.abstract | This work combines symbolic machine learning and multiscale fractal techniques to generate models that characterize cellular rejection in myocardial biopsies and that can base a diagnosis support system. The models express the knowledge by the features threshold, fractal dimension, lacunarity, number of clusters, spatial percolation and percolation probability, all obtained with myocardial biopsies processing. Models were evaluated and the most significant was the one generated by the C4.5 algorithm for the features spatial percolation and number of clusters. The result is relevant and contributes to the specialized literature since it determines a standard diagnosis protocol. © 2013 Springer. | en |
dc.description.affiliation | Universidade Estadual Paulista DEMAC, Rio Claro | |
dc.description.affiliation | NUTECC Famerp, São José do Rio Preto | |
dc.description.affiliation | Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto | |
dc.description.affiliation | Instituto de Anatomia Patológica e Citopatologia, São José do Rio Preto | |
dc.description.affiliation | Universidade de São Paulo FFCLRP Depto. Computação e Matemática, Ribeirão Preto | |
dc.description.affiliationUnesp | Universidade Estadual Paulista DEMAC, Rio Claro | |
dc.format.extent | 272-275 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-642-21198-0_70 | |
dc.identifier.citation | 5th Latin American Congress on Biomedical Engineering (claib 2011): Sustainable Technologies For the Health of All, Pts 1 and 2. New York: Springer, v. 33, n. 1-2, p. 272-275, 2013. | |
dc.identifier.doi | 10.1007/978-3-642-21198-0_70 | |
dc.identifier.issn | 1680-0737 | |
dc.identifier.lattes | 1961581092362881 | |
dc.identifier.scopus | 2-s2.0-84875250024 | |
dc.identifier.uri | http://hdl.handle.net/11449/74875 | |
dc.language.iso | por | |
dc.relation.ispartof | IFMBE Proceedings | |
dc.relation.ispartofsjr | 0,143 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | multiscale fractal techniques | |
dc.subject | myocardial biopsies images | |
dc.subject | symbolic machine learning | |
dc.subject | C4.5 algorithm | |
dc.subject | Diagnosis support systems | |
dc.subject | Lacunarity | |
dc.subject | Multiscale fractals | |
dc.subject | Number of clusters | |
dc.subject | Percolation probability | |
dc.subject | Symbolic machine learning | |
dc.subject | Biomedical engineering | |
dc.subject | Fractal dimension | |
dc.subject | Learning systems | |
dc.subject | Solvents | |
dc.subject | Biopsy | |
dc.title | Aprendizado de máquina simbólico e técnicas fractais para caracterizar rejeição em biópsia miocárdica | pt |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dspace.entity.type | Publication | |
unesp.author.lattes | 1961581092362881 | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |