Logotipo do repositório
 

Publicação:
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines

dc.contributor.authorPassos, Leandro A.
dc.contributor.authorde Souza, Luis A.
dc.contributor.authorMendel, Robert
dc.contributor.authorEbigbo, Alanna
dc.contributor.authorProbst, Andreas
dc.contributor.authorMessmann, Helmut
dc.contributor.authorPalm, Christoph
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionMedizinische Klinik – Klinikum Augsburg III
dc.contributor.institutionRegensburg Medical Image Computing (ReMIC)
dc.contributor.institutionOTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T17:02:09Z
dc.date.available2019-10-06T17:02:09Z
dc.date.issued2019-02-01
dc.description.abstractThe number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.en
dc.description.affiliationUFSCAR – Federal University of São Carlos Department of Computing
dc.description.affiliationMedizinische Klinik – Klinikum Augsburg III
dc.description.affiliationOTH Regensburg – Ostbayerische Technische Hochschule Regensburg Regensburg Medical Image Computing (ReMIC)
dc.description.affiliationOTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)
dc.description.affiliationUNESP – São Paulo State University Department of Computing
dc.description.affiliationUnespUNESP – São Paulo State University Department of Computing
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2014/16250-9
dc.description.sponsorshipIdFAPESP: #2015/25739-4
dc.description.sponsorshipIdFAPESP: #2016/21243-7
dc.description.sponsorshipIdCNPq: #306166/2014-3
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.format.extent475-485
dc.identifierhttp://dx.doi.org/10.1016/j.jvcir.2019.01.043
dc.identifier.citationJournal of Visual Communication and Image Representation, v. 59, p. 475-485.
dc.identifier.doi10.1016/j.jvcir.2019.01.043
dc.identifier.issn1095-9076
dc.identifier.issn1047-3203
dc.identifier.scopus2-s2.0-85061193620
dc.identifier.urihttp://hdl.handle.net/11449/190097
dc.language.isoeng
dc.relation.ispartofJournal of Visual Communication and Image Representation
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBarrett's esophagus
dc.subjectDeep learning
dc.subjectInfinity Restricted Boltzmann Machines
dc.subjectMeta-heuristics
dc.titleBarrett's esophagus analysis using infinity Restricted Boltzmann Machinesen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos