Publicação: Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
dc.contributor.author | Passos, Leandro A. | |
dc.contributor.author | de Souza, Luis A. | |
dc.contributor.author | Mendel, Robert | |
dc.contributor.author | Ebigbo, Alanna | |
dc.contributor.author | Probst, Andreas | |
dc.contributor.author | Messmann, Helmut | |
dc.contributor.author | Palm, Christoph | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Medizinische Klinik – Klinikum Augsburg III | |
dc.contributor.institution | Regensburg Medical Image Computing (ReMIC) | |
dc.contributor.institution | OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T17:02:09Z | |
dc.date.available | 2019-10-06T17:02:09Z | |
dc.date.issued | 2019-02-01 | |
dc.description.abstract | The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. | en |
dc.description.affiliation | UFSCAR – Federal University of São Carlos Department of Computing | |
dc.description.affiliation | Medizinische Klinik – Klinikum Augsburg III | |
dc.description.affiliation | OTH Regensburg – Ostbayerische Technische Hochschule Regensburg Regensburg Medical Image Computing (ReMIC) | |
dc.description.affiliation | OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST) | |
dc.description.affiliation | UNESP – São Paulo State University Department of Computing | |
dc.description.affiliationUnesp | UNESP – São Paulo State University Department of Computing | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorshipId | FAPESP: #2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: #2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: #2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: #2015/25739-4 | |
dc.description.sponsorshipId | FAPESP: #2016/21243-7 | |
dc.description.sponsorshipId | CNPq: #306166/2014-3 | |
dc.description.sponsorshipId | CNPq: #307066/2017-7 | |
dc.description.sponsorshipId | FUNDUNESP: 2597.2017 | |
dc.format.extent | 475-485 | |
dc.identifier | http://dx.doi.org/10.1016/j.jvcir.2019.01.043 | |
dc.identifier.citation | Journal of Visual Communication and Image Representation, v. 59, p. 475-485. | |
dc.identifier.doi | 10.1016/j.jvcir.2019.01.043 | |
dc.identifier.issn | 1095-9076 | |
dc.identifier.issn | 1047-3203 | |
dc.identifier.scopus | 2-s2.0-85061193620 | |
dc.identifier.uri | http://hdl.handle.net/11449/190097 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Visual Communication and Image Representation | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Barrett's esophagus | |
dc.subject | Deep learning | |
dc.subject | Infinity Restricted Boltzmann Machines | |
dc.subject | Meta-heuristics | |
dc.title | Barrett's esophagus analysis using infinity Restricted Boltzmann Machines | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |