Logo do repositório

Recent Advances in Machine Learning for Electrochemical, Optical, and Gas Sensors

dc.contributor.authorMaterón, Elsa M.
dc.contributor.authorSilva Benvenuto, Filipe S. R.
dc.contributor.authorRibas, Lucas C. [UNESP]
dc.contributor.authorJoshi, Nirav
dc.contributor.authorBruno, Odemir Martinez
dc.contributor.authorCarrilho, Emanuel
dc.contributor.authorOliveira, Osvaldo N.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionInstituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:48:39Z
dc.date.issued2023-01-01
dc.description.abstractMachine learning is increasingly used in the analysis of distinct types of data for clinical diagnosis and monitoring the environment, particularly because of the large amounts of data generated in sensing and biosensing methods. In this chapter, we discuss the usage of machine learning for electrochemical sensors, with emphasis on colorimetric principles of detection.en
dc.description.affiliationInstituto de Química de São Carlos Universidade de São Paulo, SP
dc.description.affiliationInstituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, SP
dc.description.affiliationSão Carlos Institute of Physics University of São Paulo, P.O Box 369, SP
dc.description.affiliationInstitute of Biosciences Humanities and Exact Sciences São Paulo State University, SP
dc.description.affiliationInstitute of Mathematics and Computer Science University of São Paulo, SP
dc.description.affiliationUnespInstitute of Biosciences Humanities and Exact Sciences São Paulo State University, SP
dc.format.extent117-138
dc.identifierhttp://dx.doi.org/10.1007/978-981-99-0393-1_6
dc.identifier.citationMachine Learning for Advanced Functional Materials, p. 117-138.
dc.identifier.doi10.1007/978-981-99-0393-1_6
dc.identifier.scopus2-s2.0-85171494884
dc.identifier.urihttps://hdl.handle.net/11449/300125
dc.language.isoeng
dc.relation.ispartofMachine Learning for Advanced Functional Materials
dc.sourceScopus
dc.titleRecent Advances in Machine Learning for Electrochemical, Optical, and Gas Sensorsen
dc.typeCapítulo de livropt
dspace.entity.typePublication
relation.isAuthorOfPublication89ad1363-6bb2-4b6e-b3b8-e6bce1db692b
relation.isAuthorOfPublication.latestForDiscovery89ad1363-6bb2-4b6e-b3b8-e6bce1db692b
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos