Repository logo
 

Publication:
Liming in the transition to no-till under a wheat-soybean rotation

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Type

Article

Access right

Acesso restrito

Abstract

Soil and subsoil aluminium toxicity has been one of the main limiting factors for soybean and wheat yields in tropical soils. Usually liming is the most effective way to deal with soil acidity and Al toxicity, but in no-till systems the soil is not disturbed making it impossible to incorporate lime in the arable layer, and lime has been usually applied on the soil surface. In this paper soybean and wheat responses to lime applied on the soil surface and/or incorporated in the soil arable layer were evaluated during the transition from conventional tillage to a no-till system. The experiment was conducted for 3 years in Parana, Brazil, using a wheat-soybean rotation. Lime rates ranging from 0.0 to 9.0 t ha(-1) were incorporated down to 20 cm and 4.5 t ha(-1) were spread or not on the soil surface. Soil samples were taken down to 60 cm, 39 months after the first lime application. Soil chemical characteristics were affected by lime application down to 60 cm deep in the profile. Soybean responded to lime irrespective of application method, but the highest accumulated yield was obtained when lime was incorporated into the arable layer. For wheat, the more sensitive the cultivar, the greater was the response to lime. During the introduction of a no-till system, lime must be incorporated into the arable layer when the wheat cultivar is Al-sensitive. (C) 2007 Elsevier B.V. All rights reserved.

Description

Keywords

aluminium, base leaching, calcium, magnesium, organic acids

Language

English

Citation

Soil & Tillage Research. Amsterdam: Elsevier B.V., v. 97, n. 2, p. 207-217, 2007.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs