Denoising digital breast tomosynthesis projections using convolutional neural networks
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The Digital Breast Tomosynthesis (DBT) projections are obtained with low quality, being essential to use denoising methods to increase the quality of the projections. Currently, deep learning methods have become the state-of-art approach in denoising. Some papers have proposed to apply deep learning methods for denoising DBT projections, however, there is a lack of clarity in the results comparing with traditional methods. In this paper, we proposed to use a CNN to denoise DBT projections, and compare it with traditional denoising methods. The results shown that the CNN is superior quantitatively and qualitatively in comparison with the traditional methods.
Descrição
Palavras-chave
Convolutional neural networks, Deep learning, Denoising, Digital breast tomosynthesis
Idioma
Inglês
Citação
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 11596.





