Logo do repositório

Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations

dc.contributor.authorTuresson, Hjalmar K.
dc.contributor.authorRibeiro, Sidarta
dc.contributor.authorPereira, Danillo R. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.institutionUniv Fed Rio Grande do Norte
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fortaleza
dc.date.accessioned2018-11-26T17:06:19Z
dc.date.available2018-11-26T17:06:19Z
dc.date.issued2016-09-21
dc.description.abstractAutomatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F-1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available.en
dc.description.affiliationUniv Fed Rio Grande do Norte, Inst Cerebro, Natal, RN, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Fortaleza, Lab Bioinformat, Programa Posgrad Informat Aplicada, Fortaleza, Ceara, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipNational Council for Scientific and Technological Development
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: 402422/2012-0
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: 470501/2013-8
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: 301928/2014-2
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: 470571/2013-6
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: 306166/2014-3
dc.description.sponsorshipIdFAPESP: 2013/07699-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/50319-9
dc.description.sponsorshipIdCNPq: 402422/2012-0
dc.description.sponsorshipIdCNPq: 470501/2013-8
dc.description.sponsorshipIdCNPq: 301928/2014-2
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent14
dc.identifierhttp://dx.doi.org/10.1371/journal.pone.0163041
dc.identifier.citationPlos One. San Francisco: Public Library Science, v. 11, n. 9, 14 p., 2016.
dc.identifier.doi10.1371/journal.pone.0163041
dc.identifier.fileWOS000383892700036.pdf
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11449/161955
dc.identifier.wosWOS:000383892700036
dc.language.isoeng
dc.publisherPublic Library Science
dc.relation.ispartofPlos One
dc.relation.ispartofsjr1,164
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.titleMachine Learning Algorithms for Automatic Classification of Marmoset Vocalizationsen
dc.typeArtigopt
dcterms.rightsHolderPublic Library Science
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0001-9325-9545[2]
unesp.author.orcid0000-0003-3886-4309[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000383892700036.pdf
Tamanho:
2.38 MB
Formato:
Adobe Portable Document Format
Descrição: