Logo do repositório

Building boundary extraction from LiDAR data using a local estimated parameter for alpha shape algorithm

dc.contributor.authorDos Santos, R. C. [UNESP]
dc.contributor.authorGalo, M. [UNESP]
dc.contributor.authorCarrilho, A. C. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:04:32Z
dc.date.available2019-10-06T16:04:32Z
dc.date.issued2018-09-20
dc.description.abstractThe α-shape algorithm is a very common option to extract building boundaries from LiDAR data. This algorithm is normally executed in 2D space considering a parameter α as a binary classifier which controls the distinctiveness of points whether or not they belong to the object boundary. For point cloud data, this parameter is directly related to the local point density and the level of detail of building boundaries. Studies that have explored this concept usually consider a unique parameter α to extract all buildings in the dataset. However, the point density can have a considerable variation along the point cloud and, in this case, the use a global parameter may not be the best choice. Alternatively, this paper proposes a data-driven method that estimates a local parameter for each building. The method evaluation considered six test areas with different levels of complexity, selected from a LiDAR dataset acquired over the city of Presidente Prudente/Brazil. From the qualitative and quantitative analysis, it could be seen that the proposed method generated better results than when a global parameter is used. The proposed method was also able to withstand density variation among the LiDAR data, having a positional accuracy around 0.22 m, against 0.40 m of global parameter.en
dc.description.affiliationSão Paulo State University - UNESP Graduate Program in Cartographic Sciences
dc.description.affiliationSão Paulo State University - UNESP Dept. of Cartography
dc.description.affiliationUnespSão Paulo State University - UNESP Graduate Program in Cartographic Sciences
dc.description.affiliationUnespSão Paulo State University - UNESP Dept. of Cartography
dc.format.extent127-132
dc.identifierhttp://dx.doi.org/10.5194/isprs-archives-XLII-1-127-2018
dc.identifier.citationInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 1, p. 127-132, 2018.
dc.identifier.doi10.5194/isprs-archives-XLII-1-127-2018
dc.identifier.issn1682-1750
dc.identifier.scopus2-s2.0-85056189821
dc.identifier.urihttp://hdl.handle.net/11449/188327
dc.language.isoeng
dc.relation.ispartofInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAlpha Shape Algorithm
dc.subjectAverage Point Spacing
dc.subjectBuilding Boundary Extraction
dc.subjectDelaunay Triangulation
dc.subjectLiDAR Data
dc.subjectPoint density
dc.titleBuilding boundary extraction from LiDAR data using a local estimated parameter for alpha shape algorithmen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.departmentCartografia - FCTpt

Arquivos