Logotipo do repositório
 

Publicação:
DYNAMIC OPTIMIZATION MODEL TO CONTROL WEED INFESTATION: A MIXED-INTEGER NONLINEAR PROGRAMMING APPROACH

dc.contributor.authorOliveira, Vilma Alves
dc.contributor.authorSilva, Geraldo Nunes
dc.contributor.authorFurlan, Marcos M. [UNESP]
dc.contributor.authorStiegelmeier, Elenice Weber
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal da Grande Dourados
dc.date.accessioned2023-07-29T12:30:24Z
dc.date.available2023-07-29T12:30:24Z
dc.date.issued2022-01-01
dc.description.abstractOne of the main goals of weed control is to maintain the weed population density in a equilibrium level that is below economic damages. To achieve this goal, we propose a dynamic optimization model for weed infestation control using herbicides rotation strategy. The objective is to reduce the seed bank and the use of herbicide, max-imizing the profit in a pre-determined period of time and minimizing the environmental impacts caused by excessive use of herbicides. The dynamic optimization model takes into account the decreased herbicide efficacy over time, which is due to an increase of weed resistance originated from selective pressure. The dynamic optimization problem involves integer and continuous variables modeled as a mixed-integer nonlinear programming problem (MINLP). The MINLP problem was solved by an implicit enumeration known as branch and bound method. Numerical simulations illustrated the solution of a case study for infestation control of the Bidens subalternans specie in a maize crop by interchang-ing between two classes of herbicides. The results demonstrate that our optimization model can improve the profit of farmers and has the potential to contribute for further decision-support tools in weed management that considers the resistance dynamics.en
dc.description.affiliationDepartment of Mathematics Universidade Tecnológica Federal do Paraná, PR
dc.description.affiliationDepartment of Electrical and Computer Engineering Universidade de São Paulo, SP
dc.description.affiliationDepartment of Applied Mathematics Universidade Estadual Paulista, SP
dc.description.affiliationFaculdade de Ciências Exatas e Tecnologias Universidade Federal da Grande Dourados, MS
dc.description.affiliationUnespDepartment of Applied Mathematics Universidade Estadual Paulista, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 18/08036-8
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.format.extent175-196
dc.identifier.citationAdvances in Mathematical Sciences and Applications, v. 31, n. 1, p. 175-196, 2022.
dc.identifier.issn1343-4373
dc.identifier.scopus2-s2.0-85139648088
dc.identifier.urihttp://hdl.handle.net/11449/246051
dc.language.isoeng
dc.relation.ispartofAdvances in Mathematical Sciences and Applications
dc.sourceScopus
dc.subjectdecision-support tools
dc.subjectdynamic optimization model
dc.subjectmixed-integer nonlinear programming
dc.subjectweed management
dc.titleDYNAMIC OPTIMIZATION MODEL TO CONTROL WEED INFESTATION: A MIXED-INTEGER NONLINEAR PROGRAMMING APPROACHen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções