Logo do repositório

Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese

dc.contributor.authorGauy, Marcelo Matheus
dc.contributor.authorBerti, Larissa Cristina [UNESP]
dc.contributor.authorCândido, Arnaldo [UNESP]
dc.contributor.authorNeto, Augusto Camargo
dc.contributor.authorGoldman, Alfredo
dc.contributor.authorLevin, Anna Sara Shafferman
dc.contributor.authorMartins, Marcus
dc.contributor.authorde Medeiros, Beatriz Raposo
dc.contributor.authorQueiroz, Marcelo
dc.contributor.authorSabino, Ester Cerdeira
dc.contributor.authorSvartman, Flaviane Romani Fernandes
dc.contributor.authorFinger, Marcelo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:05:34Z
dc.date.issued2023-01-01
dc.description.abstractThis work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.en
dc.description.affiliationUniversidade de São Paulo, Butanta, SP
dc.description.affiliationUniversidade Estadual Paulista, SP
dc.description.affiliationUnespUniversidade Estadual Paulista, SP
dc.format.extent271-275
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-34344-5_32
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275.
dc.identifier.doi10.1007/978-3-031-34344-5_32
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85163947875
dc.identifier.urihttps://hdl.handle.net/11449/306190
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectPANNs
dc.subjectRespiratory Insufficiency
dc.subjectTransformers
dc.titleDiscriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portugueseen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-8902-0435[1]
unesp.author.orcid0000-0002-5647-0891[3]
unesp.author.orcid0000-0001-5746-4154[5]
unesp.author.orcid0000-0001-8298-0070[8]
unesp.author.orcid0000-0003-2623-5126[10]
unesp.author.orcid0000-0002-9941-3934[11]
unesp.author.orcid0000-0002-1391-1175[12]

Arquivos

Coleções