Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
| dc.contributor.author | Gauy, Marcelo Matheus | |
| dc.contributor.author | Berti, Larissa Cristina [UNESP] | |
| dc.contributor.author | Cândido, Arnaldo [UNESP] | |
| dc.contributor.author | Neto, Augusto Camargo | |
| dc.contributor.author | Goldman, Alfredo | |
| dc.contributor.author | Levin, Anna Sara Shafferman | |
| dc.contributor.author | Martins, Marcus | |
| dc.contributor.author | de Medeiros, Beatriz Raposo | |
| dc.contributor.author | Queiroz, Marcelo | |
| dc.contributor.author | Sabino, Ester Cerdeira | |
| dc.contributor.author | Svartman, Flaviane Romani Fernandes | |
| dc.contributor.author | Finger, Marcelo | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T20:05:34Z | |
| dc.date.issued | 2023-01-01 | |
| dc.description.abstract | This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types. | en |
| dc.description.affiliation | Universidade de São Paulo, Butanta, SP | |
| dc.description.affiliation | Universidade Estadual Paulista, SP | |
| dc.description.affiliationUnesp | Universidade Estadual Paulista, SP | |
| dc.format.extent | 271-275 | |
| dc.identifier | http://dx.doi.org/10.1007/978-3-031-34344-5_32 | |
| dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275. | |
| dc.identifier.doi | 10.1007/978-3-031-34344-5_32 | |
| dc.identifier.issn | 1611-3349 | |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.scopus | 2-s2.0-85163947875 | |
| dc.identifier.uri | https://hdl.handle.net/11449/306190 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
| dc.source | Scopus | |
| dc.subject | PANNs | |
| dc.subject | Respiratory Insufficiency | |
| dc.subject | Transformers | |
| dc.title | Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0001-8902-0435[1] | |
| unesp.author.orcid | 0000-0002-5647-0891[3] | |
| unesp.author.orcid | 0000-0001-5746-4154[5] | |
| unesp.author.orcid | 0000-0001-8298-0070[8] | |
| unesp.author.orcid | 0000-0003-2623-5126[10] | |
| unesp.author.orcid | 0000-0002-9941-3934[11] | |
| unesp.author.orcid | 0000-0002-1391-1175[12] |
