Logotipo do repositório
 

Publicação:
LEARNING SPAM FEATURES USING RESTRICTED BOLTZMANN MACHINES

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iadis

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Nowadays, spam detection has been one of the foremost machine learning-oriented applications in the context of security in computer networks. In this work, we propose to learn intrinsic properties of e-mail messages by means of Restricted Boltzmann Machines (RBMs) in order to identity whether such messages contain relevant (ham) or non-relevant (spam) content. The main idea contribution of this work is to employ Harmony Search-based optimization techniques to fine-tune RBM parameters, as well as to evaluate their robustness in the context spam detection. The unsupervised learned features are then used to feed the Optimum-Path Forest classifier, being the original features extracted from e-mail content and compared against the new ones. The results have shown RBMs are suitable to learn features from e-mail data, since they obtained favorable results in the datasets considered in this work.

Descrição

Palavras-chave

Spam Detection, Machine Learning, Restricted Boltzmann Machines, Optimum-Path Forest

Idioma

Inglês

Como citar

Iadis-international Journal On Computer Science And Information Systems. Lisboa: Iadis, v. 11, n. 1, p. 99-114, 2016.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação