Logotipo do repositório
 

Publicação:
Bayesian analysis of spatial data using different variance and neighbourhood structures

dc.contributor.authorRampaso, Renato Couto [UNESP]
dc.contributor.authorPires de Souza, Aparecida Doniseti [UNESP]
dc.contributor.authorFlores, Edilson Ferreira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-27T04:40:24Z
dc.date.available2018-11-27T04:40:24Z
dc.date.issued2016-02-11
dc.description.abstractIn disease mapping, the overall goal is to study the incidence or mortality risk caused by a specific disease in a number of geographical regions. It is common to assume that the response variable follows a Poisson distribution, whose average rate can be explained by a group of covariates and a random effect. For this random effect, it is considered conditional autoregressive (CAR) models, which carry information about the neighbourhood relationship between the regions. The focus of this paper was to explore and compare some CAR models proposed in the literature. An application with epidemiological data was conducted to model the risk of death due to Crohn's Disease and Ulcerative Colitis in the State of SAo Paulo - Brazil. Finally, a simulation study was done to strengthen the results and assess the performance of the models in the presence of various levels of spatial dependence.en
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
dc.format.extent535-552
dc.identifierhttp://dx.doi.org/10.1080/00949655.2015.1022549
dc.identifier.citationJournal Of Statistical Computation And Simulation. Abingdon: Taylor & Francis Ltd, v. 86, n. 3, p. 535-552, 2016.
dc.identifier.doi10.1080/00949655.2015.1022549
dc.identifier.fileWOS000364339300008.pdf
dc.identifier.issn0094-9655
dc.identifier.lattes7939791175456786
dc.identifier.orcid0000-0001-7385-6705
dc.identifier.urihttp://hdl.handle.net/11449/164959
dc.identifier.wosWOS:000364339300008
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofJournal Of Statistical Computation And Simulation
dc.relation.ispartofsjr0,704
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectconditional autoregressive models
dc.subjectdisease mapping
dc.subjectspatial Bayesian inference
dc.titleBayesian analysis of spatial data using different variance and neighbourhood structuresen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
dspace.entity.typePublication
unesp.author.lattes7939791175456786[3]
unesp.author.lattes8859883555687056[2]
unesp.author.orcid0000-0001-7385-6705[3]
unesp.author.orcid0000-0001-9533-5804[2]
unesp.departmentEstatística - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000364339300008.pdf
Tamanho:
1.8 MB
Formato:
Adobe Portable Document Format
Descrição: