Titanium dioxide nanotubes incorporated into conventional glass ionomer cement alter the biological behavior of pre-odontoblastic cells
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The objective was to address the repercussion of adding titanium dioxide nanotubes (TiO2-nt) into high-viscosity conventional glass ionomer cement (GIC) on the biological properties of pre-odontoblastic cells (MDPC-23) challenged by lipopolysaccharides (LPS - 2 μg/mL). TiO2-nt was added to Ketac Molar EasyMix at 3, 5, 7 %, whereas unblended GIC served as control. Analyses included proliferation (n=6; 24, 48, 72 h), metabolism (MTT; n=6; 24, 48, 72 h); morphology laser microscopy (n=3; 24, 48, 72 h); proteome assessments IL-1β, IL-6, IL-10, VEGF, TNF-α (n=3; 12, 18 h); mRNA levels (RT-PCR) of Il-1β, Il-6, Il-10, VEGF, TNF-α (n=3; 12, 18 h) and DSPP (n=3; 24, 72, 120 h). Data analysis included Shapiro-Wilk, Levene, and generalized linear models (α=0.05). Results demonstrated that cell proliferation increased over time for all groups, and was not impacted by TiO2-nt (p>0.05). GIC groups displayed lower MTT values compared to cells cultured without GIC discs (p=0.019); disregarding the presence of TiO2. Remarkably, TiO2-nt reversed the effect of GIC, reducing the levels of selected biomarkers. LPS treatment modified the expression of the immune-inflammatory markers by MDPC-23 cells (p<0.0001). Morphological analysis did not reveal distinctions for any of the studied. TiO2-nt modulated immune-inflammatory and dentin marker expression by MDPC-23 cells cultured on conventional GIC discs, and did not affect cell morphology/viability, regardless LPS exposure. In conclusion, TiO2-nt may become a reliable clinical strategy to encourage pulp tissue repair.
Descrição
Palavras-chave
Dental Restoration, Glass Ionomer Cements, Odontoblasts, Pulp
Idioma
Inglês
Citação
Colloids and Surfaces B: Biointerfaces, v. 246.





