Publicação:
Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements

dc.contributor.authorFerreira, Monique S. [UNESP]
dc.contributor.authorGalo, Maria de Lourdes B.T. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:48Z
dc.date.available2014-05-27T11:28:48Z
dc.date.issued2013-04-01
dc.description.abstractConsidering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.en
dc.description.affiliationFCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationDepartamento de Cartografia FCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationUnespFCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationUnespDepartamento de Cartografia FCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.format.extent519-532
dc.identifierhttp://dx.doi.org/10.1590/S0001-37652013005000037
dc.identifier.citationAnais da Academia Brasileira de Ciencias, v. 85, n. 2, p. 519-532, 2013.
dc.identifier.doi10.1590/S0001-37652013005000037
dc.identifier.file2-s2.0-84879580128.pdf
dc.identifier.issn0001-3765
dc.identifier.issn1678-2690
dc.identifier.lattes1647318644299561
dc.identifier.scieloS0001-37652013005000037
dc.identifier.scopus2-s2.0-84879580128
dc.identifier.urihttp://hdl.handle.net/11449/74997
dc.identifier.wosWOS:000321395300007
dc.language.isoeng
dc.relation.ispartofAnais da Academia Brasileira de Ciências
dc.relation.ispartofjcr0.956
dc.relation.ispartofsjr0,418
dc.relation.ispartofsjr0,418
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial neural network
dc.subjectChlorophyll a
dc.subjectFluorescence
dc.subjectRemote sensing of water
dc.subjectSpatial inference
dc.titleChlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurementsen
dc.typeArtigo
dcterms.licensehttp://www.scielo.br/revistas/aabc/iaboutj.htm
dspace.entity.typePublication
unesp.author.lattes1647318644299561
unesp.author.orcid0000-0002-1726-3152[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentCartografia - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84879580128.pdf
Tamanho:
776.6 KB
Formato:
Adobe Portable Document Format