Logo do repositório
 

Genomic prediction of breeding values for carcass traits in Nellore cattle

dc.contributor.authorFernandes Júnior, Gerardo A. [UNESP]
dc.contributor.authorRosa, Guilherme J. M.
dc.contributor.authorValente, Bruno D.
dc.contributor.authorCarvalheiro, Roberto [UNESP]
dc.contributor.authorBaldi, Fernando [UNESP]
dc.contributor.authorGarcia, Diogo A. [UNESP]
dc.contributor.authorGordo, Daniel G. M. [UNESP]
dc.contributor.authorEspigolan, Rafael [UNESP]
dc.contributor.authorTakada, Luciana [UNESP]
dc.contributor.authorTonussi, Rafael L. [UNESP]
dc.contributor.authorDe Andrade, Willian B. F. [UNESP]
dc.contributor.authorMagalhães, Ana F. B. [UNESP]
dc.contributor.authorChardulo, Luis A. L. [UNESP]
dc.contributor.authorTonhati, Humberto [UNESP]
dc.contributor.authorDe Albuquerque, Lucia G. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Wisconsin-Madison
dc.date.accessioned2018-12-11T17:27:01Z
dc.date.available2018-12-11T17:27:01Z
dc.date.issued2016-01-29
dc.description.abstractBackground: The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models. Methods: Phenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years of age. All animals were genotyped using a 777k Illumina Bovine HD SNP chip. Accuracy of genomic predictions of breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian ridge regression (BRR), Bayes C (BC) and Bayesian Lasso (BL), and two types of response variables: traditional estimated breeding value (EBV), and phenotype adjusted for fixed effects (Y∗). Results: The prediction accuracies achieved with the BRR model were equal to 0.25 (BFT), 0.33 (HCW) and 0.36 (REA) when EBV was used as response variable, and 0.21 (BFT), 0.37 (HCW) and 0.46 (REA) when using Y∗. Results obtained with the BC and BL models were similar. Accuracies increased for traits with a higher heritability, and using Y∗instead of EBV as response variable resulted in higher accuracy when heritability was higher. Conclusions: Our results indicate that the accuracy of genomic prediction of carcass traits in Nellore cattle is moderate to high. Prediction of genomic breeding values from adjusted phenotypes Y∗was more accurate than from EBV, especially for highly heritable traits. The three models considered (BRR, BC and BL) led to similar predictive abilities and, thus, either one could be used to implement genomic prediction for carcass traits in Nellore cattle.en
dc.description.affiliationFaculdade de Ciências Agrárias e Veterinárias UNESP
dc.description.affiliationDepartment of Animal Sciences University of Wisconsin-Madison
dc.description.affiliationFaculdade de Medicina Veterinária e Zootecnia UNESP
dc.description.affiliationUnespFaculdade de Ciências Agrárias e Veterinárias UNESP
dc.description.affiliationUnespFaculdade de Medicina Veterinária e Zootecnia UNESP
dc.identifierhttp://dx.doi.org/10.1186/s12711-016-0188-y
dc.identifier.citationGenetics Selection Evolution, v. 48, n. 1, 2016.
dc.identifier.doi10.1186/s12711-016-0188-y
dc.identifier.file2-s2.0-84957434055.pdf
dc.identifier.issn1297-9686
dc.identifier.issn0999-193X
dc.identifier.scopus2-s2.0-84957434055
dc.identifier.urihttp://hdl.handle.net/11449/177774
dc.language.isoeng
dc.relation.ispartofGenetics Selection Evolution
dc.relation.ispartofsjr1,745
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleGenomic prediction of breeding values for carcass traits in Nellore cattleen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentZootecnia - FCAVpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84957434055.pdf
Tamanho:
1 MB
Formato:
Adobe Portable Document Format
Descrição: